IR Spectra of CH2OO at resolution 0

Slides:



Advertisements
Similar presentations
Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,
Advertisements

Simulating the spectrum of the water dimer in the far infrared and visible Ross E. A. Kelly, Matt J. Barber, Jonathan Tennyson Department of Physics and.
Kuo-Hsiang Hsu and Yuan-Pern Lee Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Taiwan Meng Huang.
INFRARED SPECTROSCOPIC STUDY ON FERMI RESONANCE OF THE EXCESS PROTON VIBRATION IN BINARY CLUSTERS Ryunosuke SHISHIDO, Asuka FUJII Department of Chemistry,
POSSIBLE OBSERVATION OF THE 3 A’ - 1 A’ ELECTRONIC TRANSITION OF THE METHYLENE PEROXY CRIEGEE INTERMEDIATE Neal D. Kline, Marc Coons, John Herbert and.
Tapas Chakraborty Indian Association for the Cultivation of Science Calcutta, India MJ16, OSU ISMS 2013 Photochemistry of acetone in simulated atmosphere.
VADIM L. STAKHURSKY *, LILY ZU †, JINJUN LIU, TERRY A. MILLER Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University 120 W. 18th.
Studying Ozonolysis Reactions of 2-Butenes Using Cavity Ring-down Spectroscopy Liming Wang, Yingdi Liu, Mixtli Campos-Pineda, Chad Priest and Jingsong.
Laboratory of Molecular Spectroscopy & Nano Materials, Pusan National University, Republic of Korea Spectroscopic Identification of New Aromatic Molecular.
Oxygen Atom Recombination in the Presence of Singlet Molecular Oxygen Michael Heaven Department of Chemistry Emory University, USA Valeriy Azyazov P.N.
Ultraviolet Photodissociation Dynamics of the 3-Cyclohexenyl Radical Michael Lucas, Yanlin Liu, Jasmine Minor, Raquel Bryant, Jingsong Zhang Department.
Experimental and Theoretical Investigations of HBr+He Rotational Energy Transfer M. H. Kabir, I. O. Antonov, J. M. Merritt, and M. C. Heaven Department.
Application of Time-Resolved Fourier-Transform Infrared Spectroscopy to Photodissociation Dynamics Application of Time-Resolved Fourier-Transform Infrared.
Fixed mirror Movable mirror F M time t mirror position.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
MOTIVATIONS : Atmospheric Chemistry Troposphere Chemistry – Ozone Production RO 2 + NO → RO + NO 2 NO 2 → NO + O( 3 P) O( 3 P) + O 2 + M → O 3 + M.
The Simplest Criegee Intermediate: (CH2OO): Equilibrium Structure and Possible Formation from Atmospheric Lightning Michael McCarthy, Kyle Crabtree, Oscar.
Conformation specific spectroscopy of jet- cooled 4-phenyl-1-butene Joshua A. Sebree, Josh J. Newby, Nathan R. Pillsbury, Timothy Zwier Department of Chemistry,
GLOBAL FIT ANALYSIS OF THE FOUR LOWEST VIBRATIONAL STATES OF ETHANE: THE 12  9 BAND L. Borvayeh and N. Moazzen-Ahmadi Department of Physics and Astronomy.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
The A ← X ABSORPTION SPECTRUM OF 2-NITROOXYBUTYL PEROXY RADICAL
Study of the CH 2 I + O 2 Reaction with a Step-scan Fourier-transform Infrared Absorption Spectrometer: Spectra of the Criegee Intermediate CH 2 OO and.
POLAR (ACYCLIC) ISOMER OF FORMIC ACID DIMER: RAMAN SPECTROSCOPY STUDY
FIRST HIGH RESOLUTION INFRARED SPECTROSCOPY OF GAS PHASE CYCLOPENTYL RADICAL: STRUCTURAL AND DYNAMICAL INSIGHTS FROM THE LONE CH STRETCH Melanie A. Roberts,
Meng Huang, Anne B. McCoy and Terry A. Miller Department of Chemistry and Biochemistry The Ohio State University CH 2 XOO Systems (X = Cl, Br, I) FD05/06.
Neal Kline, Meng Huang, and Terry A. Miller Department of Chemistry and Biochemistry The Ohio State University.
Reinvestigation of The Emission Spectra Following the 266 nm Photolysis of Iodomethanes Cian-Ping Tu, Hsin-I Cheng, and Bor-Chen Chang Department of Chemistry.
Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,
Proton Stretch in H 4 O 2 + : Effect of Ar Jheng-Wei Li, Ying-Cheng Li, Kaito Takahashi and Jer-Lai Kuo Institute of Atomic and Molecular Sciences, Academia.
INFRARED SPECTROSCOPY OF (CH 3 ) 3 N-H + -(H 2 O) n (n = 1-22) Ryunosuke Shishido, Asuka Fujii Department of Chemistry, Graduate School of Science, Tohoku.
Photoelectron spectroscopy of the cyclopentadienide anion: Analysis of the Jahn- Teller effects in the cyclopentadienyl radical Takatoshi Ichino, Adam.
1. 2 Natural Anthropogenic 3  Production of OH radical  An important source of HOx  The observed yields: 10% - 100%.  Generate Criegee intermediate.
Two-color Resonant Four-wave Mixing Spectroscopy of Highly Predissociated Levels in the à 2 A 1 State of CH 3 S Ching-Ping Liu, a Scott A. Reid, b and.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
VIBRONIC ANALYSIS FOR TRANSITION OF ISOPROPOXY Rabi Chhantyal-Pun, Mourad Roudjane, Dmitry G. Melnik and Terry A. Miller TD03.
OPTICAL-OPTICAL DOUBLE RESONANCE SPECTROSCOPY OF SrOH: THE 2 Π(000) – 2 Π(000) AND THE 2 Σ + (000) – 2 Π 1/2 (000) TRANSITIONS J.-G. WANG, P. M. SHERIDAN,
Jheng-Wei Li, Kaito Takahashi and Jer-Lai Kuo Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan Vibrational Coupling in Solvated.
Md Asmaul Reza, Jahangir Alam, Amy Mason, Neil Reilly and Jinjun Liu Department of Chemistry, University of Louisville JET-COOLED DISPERSED FLUORESCENCE.
Yu-Shu Lin, Cheng-Chung Chen, and Bor-Chen Chang Department of Chemistry National Central University Chung-Li 32001, Taiwan ~ ~ Electronic Spectroscopy.
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 : ← Band Near 4.3 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
LASER INDUCED FLUORESCENCE SPECTROSCOPY OF THE SiNSi RADICAL II: IDENTIFICATIONS OF THE A2A1, B2B1, AND D2Sg+ STATES C. MOTOYOSHI, Y. SUMIYOSHI, Y. ENDO.
Lineshape analysis of CH3F-(ortho-H2)n absorption spectra in 3000 cm-1 region in solid para-H2 Yuki Miyamoto Graduate School of Natural Science and Technology,
Spectroscopic and Kinetic Studies of Atmospheric Free Radicals
ANH T. LE, GREGORY HALL, TREVOR SEARSa Division of Chemistry
Probing the vibrational spectroscopy of the deprotonated thymine radical by photodetachment and state-selective autodetachment photoelectron spectroscopy.
~ ~ DETERMINATION OF THE TRANSITION DIPOLE MOMENT OF THE A - X
& DETECTION AND CHARACTERIZATION OF THE STANNYLENE (SnH2) FREE RADICAL.
LASER SPECTROSCOPY AND DYNAMICS OF THE JET-COOLED AsH2 FREE RADICAL
Carlos Cabezas and Yasuki Endo
The Cs2 a3Su+, 33Sg+, and 33Pg states
PHOTODISSOCIATION OF FORMIC ACID ISOLATED IN SOLID PARAHYDROGEN Y
A.J. Barclay, S. Sheybani-Deloui, N. Moazzen-Ahmadi
M. Rezaei, J. George, L. Welbanks, and N. Moazzen-Ahmadi
Characterization of CHBrCl2 photolysis by velocity map imaging
Tokyo Univ. Science Mitsunori Araki, Yuki Matsushita, Koichi Tsukiyama
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
HIGH RESOLUTION INFRARED SPECTRA OF TRIACETYLENE*
Bob Grimminger and Dennis Clouthier
The Rotational Spectrum of cis- and trans-HSSOH
Far Infrared Spectroscopy of Anti-Vinyl Alcohol
JILA F. Dong1, M. A. Roberts, R. S. Walters and D. J. Nesbitt
Electronic bands of ScC in the region 620 – 720 nm
Stability of the HOOO Radical via Infrared Action Spectroscopy
High-resolution Laser Spectroscopy
Fourier Transform Infrared Spectral
ANALYSIS OF ROTATIONAL STRUCTURE IN THE HIGH-RESOLUTION INFRARED SPECTRUM OF CIS,CIS-1,4-DIFLUOROBUTADIENE NORMAN C. CRAIG and MICHAEL C. MOORE,Department.
6. Vibrational Spectroscopy
Stepwise Internal Energy Control for Protonated Methanol Clusters
Presentation transcript:

IR Spectra of CH2OO at resolution 0 IR Spectra of CH2OO at resolution 0.25 cm-1: Assignments of ν5 and 2ν9 Bands and Overlapped Bands of ICH2OO Yu-Hsuan Huang,1 Li-Wei Chen,1 and Yuan-Pern Lee1, 2 1 Department of Applied Chemistry, National Chiao Tung University, Taiwan 2 Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan 70th International Symposium on Molecular Spectroscopy

Simplest Criegee intermediate: Importance of CH2OO Criegee mechanism important for the removal of unsaturated hydrocarbons and for the production of OH in the atmosphere R. Criegee, Rec. Chem. Prog. 18, 111 (1957) + (primary ozonide) + stabilization Isomerization and decomposition Decomposition of CH2OO HCOOH, OH, CH3, CO, CO2, etc (Criegee intermediate) dioxirane methylenebisoxy (kcal/ mol-1) Simplest Criegee intermediate: CH2OO Li et al., J. Phys. Chem. Lett. 5, 13 (2014)

Experimental observation of CH2OO CH2I + O2 → ICH2OO*→ CH2OO + I Photoionization mass spectrometry Su et al., Science 340, 174 (2013) IR spectrum of CH2OO at R = 1 cm-1 ν8 ν6 ν4 ν3 ν5 Rotationally resolved spectrum of CH2OO: definitive assignments of each band rotational constants of vib. excited states Taatjes et al., J. Am. Chem. Soc. 130, 11883 (2008) Welz et al., Science 335, 204 (2012)

Experimental setup

Absorption spectrum at 0.25 cm-1 resolution CH2I2/N2/O2 (0.13/2.77/97.12)@248 nm, Pt = 94 torr 1 cm-1 ν6 0-12.5 μs ν4 ν8 ν3 ν5 average 13 spectra 0.25 cm-1 0-25 μs Su et al., Science 340, 174 (2013)

Spectral analysis: near prolate approximation b c 𝜅= 2 𝐵 −A−C A−C =−0.95 for CH2OO κ = -1 prolate κ = +1 oblate Cs 𝐹 𝜐,𝐽,𝐾 = 𝜈 𝜐 + (𝐴 𝜐 − 𝐵 𝜐 ) 𝐾 2 + 𝐵 𝜐 𝐽 𝐽+1 𝑩 𝝊 = ( 𝑩 𝝊 + 𝑪 𝝊 ) 𝟐 Parallel transitions a-type 𝜈 𝐽, 𝐾 = 𝜈 0 + Δ𝐴−Δ 𝐵 𝐾 2 +∆ 𝐵 𝐽 𝐽+1 𝜈 𝐽, 𝐾 = 𝜈 0 + Δ𝐴−Δ 𝐵 𝐾 2 +(∆ 𝐵 𝐽+2 𝐵 ′ ) 𝐽+1 ΔJ = 0, Q branch ΔJ = 1, R branch ΔJ = -1, P branch 𝜈 𝐽, 𝐾 = 𝜈 0 + Δ𝐴−Δ 𝐵 𝐾 2 +[∆ 𝐵 𝐽−( 𝐵 ′ + 𝐵 ")]𝐽 Δ𝐴= 𝐴 ′ −𝐴“, Δ 𝐵 = 𝐵 ′ − 𝐵 “ b-type & c-type Perpendicular transitions 𝜈 𝐽, 𝐾 = 𝜈 0 + 𝐴 ′ − 𝐵 ′ + Δ𝐴−Δ 𝐵 𝐾 2 ±2 𝐴 ′ − 𝐵 ′ 𝐾" Q branch A”, B”, and C” from MW A’/A”, B’/B”, and C’/C” from calculation Nakagima and Endo, J. Chem. Phys. 139, 101103 (2013) VCI-5 and B3LYP/aug-cc-pVTZ J. Chem. Phys. 142, 214301 (2015)

ν8 mode of CH2OO c-type → Perpendicular band of prolate QQ CH2 wagging (ν8) c-type ν8 mode of CH2OO (cm-1) Δ𝐴−Δ 𝐵 IR -0.019(5) MW -0.017 19676(19) spacing/ cm-1 Δ(K2) Nakajima et al., Chem. Phys. Lett. 621, 129 (2015) c-type → Perpendicular band of prolate Expt. 0.25 cm-1 QQ Expt. 1 cm-1 Δ𝜈= Δ𝐴−Δ𝐵 Δ(𝐾 2 )+2 𝐴 ′ − 𝐵 ′ ν8 : 847.44 cm-1

ν3, ν4, and ν6 modes of CH2OO ν3 ν4 ν6 in cm-1 ν0 1434.1 1285.9 909.26 CH2 scissor/ C=O str. (ν3) a:b = 0.99:0.01 C=O str./CH2 scissor (ν4) a:b=0.88:0.12 O-O stretching (ν6) a:b = 0.98:0.02 in cm-1 ν3 ν4 ν6 ν0 1434.1 1285.9 909.26 Δ𝐴−Δ 𝐵 0.010(3) 0.0003(2) -0.014(2) Δ 𝐵 - -0.0002(3) -0.0030(5)

ν5 mode of CH2OO A’ 1241 cm-1 a-type:b-type = 60:40 A 1241 cm-1 CH2 rocking (ν5) a-type:b-type = 0.53:0.47 A’ a-type:b-type = 60:40 1241 cm-1 A 1241 cm-1 ν5 : 1213.3 cm-1 ν4

Assignment for band A Comparison of observed spectrum with simulated spectrum (0.25 cm-1) 1234 cm-1 Li et al., J. Phys. Chem. Lett. 5, 2364 (2014)

2ν9 mode of CH2OO A”sym  c- type A’sym  a- or b- type CH2 twist (ν9) c-type J. Chem. Phys. 142, 214301 (2015) A”sym  c- type A’sym  a- or b- type 2ν9 : 1234.2 cm-1 ν5 : 1213.3 cm-1 ν4

Importance of ICH2OO CH2OO + I CH2I + O2 → ICH2OO* ICH2OO Proposed mechanism UV VIS Spectrum ICH2OO J. Sehested et al., Int. J. Chem. Kinet. 26, 259 (1994) T. Gravestock et al., ChemPhysChem 11, 3928 (2010) CH2I + O2 → ICH2OO* CH2OO + I ICH2OO M decompose (for P < 60 torr) (CH2OO?) (CH2OO ?) CH2OO Beames et al., J. Am. Chem. Soc. 134, 20045 (2012) Sheps, J. Phys. Chem. Lett. 4, 4201 (2013) Ting et al. Phys. Chem. Chem. Phys. 16, 10438 (2014) Observation of gaseous ICH2OO: spectral characterization probe for kinetic measurements Huang et al., J. Phys. Chem. Lett 3, 3399 (2012) Stone et al., Phys. Chem. Chem. Phys. 15, 19119 (2013) Ting et al., J. Chem. Phys. 141, 104308 (2014)

CH2I2/N2/O2 + 308 nm under different PN2 CH2I + O2 + M→ ICH2OO + M 1-7 μs, R = 1 cm-1 Pt = 102 torr Pt = 206 torr Pt = 303 torr Pt = 403 torr

Observed spectra of ICH2OO CH2I2/O2/N2 (0.06/16/94)@308 nm average 12 spectra syn-ICH2OO anti-ICH2OO P (anti-ICH2OO) = 13 % d (ICOO) = -87.6 d (HCOO) = 31.7 Δ E = 0 kJ mol-1 d (ICOO) = 180 d (HCOO) = 62.0 Δ E = 3.8 kJ mol-1 0.5 cm-1 avg. 13 0.5 cm-1 CH2I2 NEVPT2/aVDZ B3LYP/aug-cc-pVTZ-pp

ν4 - ν6 modes of syn-ICH2OO CH2 wag (ν4) CH2 twist (ν5) C-O str. (ν7) torsional (ν12) 76 cm-1 (theo.) O-O str. (ν6) B3LYP/aug-cc-pVTZ-pp

[CH2OO] + [ICH2OO] = const. 16 Yield of CH2OO vs. ICH2OO ICI IOO 1-7 μs ICH 2 OO CH 2 OO = I OO I CI ÷ ε OO 𝜀 CI [CH2OO] + [ICH2OO] = const. slope = 1.10 ± 0.21 𝜀 𝑂𝑂 𝜀 𝐶𝐼 → slope of IOO vs. ICI

[CH2OO] + [ICH2OO] = const. 17 Yield of CH2OO vs. ICH2OO yCI = CH 2 OO CH 2 OO + ICH 2 OO + 𝑜𝑡ℎ𝑒𝑟𝑠 [CH2OO] + [ICH2OO] = const. yCI-1 ≈ 1 + ICH 2 OO CH 2 OO ≈ 1 + ( I OO I CI ÷ ε OO 𝜀 CI ) ~15 % at 1 atm ~18 % at 1 atm ~30 % at 1 atm yCI-1 = (1.04±0.02) + (9.7±0.3) ×10-20 [M] Huang et al., JPC Lett. 3, 3399 (2012) Stone et al., PCCP. 15, 19119 (2013) Ting et al., JCP 141, 104308 (2014)

Summary 1. IR spectrum of CH2OO at R= 0.25 cm-1 correct assignments of 2ν9 and ν5 spectral parameters of vib. excited states and band origins CH2OO ν3 ν4 ν5 ν6 ν8 2ν9 Expt. ν0 1434.1 (24) 1285.9 (37) 1213.3 (8) 909.26 (100) 847.44 (17) 1234.2 (27) Theo. ν0 1433.7 (38) 1285.4 (70) 1211.7 (11) 927.2 (129) 859.4 1233.9 (28) Δ𝐴−Δ 𝐵 0.010(3) 0.0003(2) 0.005(3) -0.014(2) -0.019(5) 0.066(1) Δ 𝐵 - -0.0002(3) -0.0030(5)

Summary 2. IR absorption spectrum of ICH2OO assignments of ν4 –ν7 modes of syn-ICH2OO hot bands involving ν12 are present in ν7 mode ICH2OO ν4 ν5 ν6 ν7 CH2 wag CH2 twist O-O str. C-O str. Expt. 1233.8 (41) 1224 (17) 1087 (19) 923.0 (37) p-H2 Matrix 1231.8 1225.6/ 1226.5 1085.6 917.7 (46) Theo. 1220 (36) 1227 (10) 1100 (16) 897 Y.-F. Lee and Y.-P. Lee, Mol. Phys. accepted (2015)

Summary 3. Pressure dependence of the yield of CH2OO Yield is derived from the observed spectra of CH2OO and ICH2OO yCI-1 = (1.04±0.02) + (9.7±0.3) ×10-20 [M] ~30 % of CH2OO at 1 atm

Thanks for your attention! Acknowledements: Prof. Yuan-Pern Lee Kuo-Hsiang Hsu, Yu-Te Su, Hui-Yu Lin, and Li-Wei Chen Ministry of Science and Education of Taiwan Ministry of Education $ Thanks for your attention!

CH2I2/N2/O2 photolysis at 308 nm / 248 nm at different Pt 0.5 cm-1 0.25 cm-1 0.25 cm-1 0.25 cm-1

ν8 mode of syn-CH2BrOO Locate first 5 bands Assumptions Population 884.90 1.00 1 883.00 0.67 2 881.40 0.46 3 879.90 0.33 4 878.40 0.24 5 877.1 0.18 6 875.9 0.14 7 874.9 0.11 8 874.0 0.10 9 873.2 0.08 10 872.6 0.07 torsion (ν12) Locate first 5 bands Assumptions Rotational contour IR intensity Boltzmann distributions Peak positions

ICH2OO simulation CH2 wag (ν4) a: b: c = 0.81: 0.12: 0.07 CH2 twist (ν5) a: b: c = 0.09: 0.54: 0.37

ν12 = 76 cm-1 torsion (ν12) C-O str. (ν7) a: b = 0.99: 0.01 ν 923.0 Population 923.0 1.00 1 921.3 0.73 2 919.6 0.53 3 918.0 0.39 4 916.5 0.29 5 915.1 0.22 6 913.7 0.16 7 912.4 0.12 8 911.2 0.10 9 910.0 0.07 O-O str. (ν6) a: b: c = 0.83: 0.03: 0.14

Pt= 557 torr PTotal PO2 PN2 /atm /Torr 0.733 0.026 16.0 540.8 -Δ[CH2I2] PO2 PN2 /atm /Torr 0.733 0.026 16.0 540.8