Surface ultrastructure and mechanical property of human chondrocyte revealed by atomic force microscopy  C.-H. Hsieh, Ph.D., Y.-H. Lin, Ph.D., S. Lin,

Slides:



Advertisements
Similar presentations
Y. Tochigi, P. Zhang, M. J. Rudert, T. E. Baer, J. A. Martin, S. L
Advertisements

CD56+/CD16− Natural Killer cells expressing the inflammatory protease granzyme A are enriched in synovial fluid from patients with osteoarthritis  P.
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Volume 106, Issue 6, Pages (March 2014)
Differential proteome analysis of normal and osteoarthritic chondrocytes reveals distortion of vimentin network in osteoarthritis  S. Lambrecht, M.Pharm.,
Uwe G. Kersting, Ph. D. , Johann J. Stubendorff, M. D. , Matthias C
Benoit Tesson, Michael I. Latz  Biophysical Journal 
The epidemiology and impact of pain in osteoarthritis
Extracorporeal shock wave therapy improves motor dysfunction and pain originating from knee osteoarthritis in rats  N. Ochiai, M.D., Ph.D., S. Ohtori,
P.-S. Hsu, H.-H. Lin, C.-R. Li, W.-S. Chung 
C.B. Chang, S.A. Han, E.M. Kim, S. Lee, S.C. Seong, M.C. Lee 
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
C.B. Chang, S.A. Han, E.M. Kim, S. Lee, S.C. Seong, M.C. Lee 
Volume 98, Issue 12, Pages (June 2010)
Osteoarthritis as a disease of mechanics
Volume 74, Issue 3, Pages (March 1998)
Local Viscoelastic Properties of Live Cells Investigated Using Dynamic and Quasi-Static Atomic Force Microscopy Methods  Alexander Cartagena, Arvind Raman 
Nanoscale Measurement of the Dielectric Constant of Supported Lipid Bilayers in Aqueous Solutions with Electrostatic Force Microscopy  G. Gramse, A. Dols-Perez,
One-Dimensional Brownian Motion of Charged Nanoparticles along Microtubules: A Model System for Weak Binding Interactions  Itsushi Minoura, Eisaku Katayama,
S.M.T. Chan, C.P. Neu, G. DuRaine, K. Komvopoulos, A.H. Reddi 
Susanne Karsch, Deqing Kong, Jörg Großhans, Andreas Janshoff 
Cytochrome c oxidase levels in chondrocytes during monolayer expansion and after return to three dimensional culture  O.A. Boubriak, J.T.S. Brooks, J.P.G.
Volume 107, Issue 5, Pages (September 2014)
PGE2 signal via EP2 receptors evoked by a selective agonist enhances regeneration of injured articular cartilage  S. Otsuka, M.D., T. Aoyama, M.D., Ph.D.,
Meniscus and cartilage exhibit distinct intra-tissue strain distributions under unconfined compression  J.H. Lai, M.E. Levenston  Osteoarthritis and Cartilage 
A. H. Huang, B. S. , M. Yeger-McKeever, M. D. , A. Stein, R. L
Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering.
Role of Tetraspanins CD9 and CD151 in Primary Melanocyte Motility
Lateral Mechanical Coupling of Stereocilia in Cochlear Hair Bundles
Anne Marie W. Bartosch, Rick Mathews, John M. Tarbell 
Estimation of mechanical properties of articular cartilage with MRI – dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation 
Y. Tochigi, P. Zhang, M. J. Rudert, T. E. Baer, J. A. Martin, S. L
Characterization of viscoelastic properties of normal and osteoarthritic chondrocytes in experimental rabbit model  Q.Y. Zhang, Ph.D., X.H. Wang, M.D.,
Time to be positive about negative data?
Methylation of the OP-1 promoter: potential role in the age-related decline in OP-1 expression in cartilage  R.F. Loeser, M.D., H.-J. Im, Ph.D., B. Richardson,
Michael J. Rosenbluth, Wilbur A. Lam, Daniel A. Fletcher 
L. C. Davies, B. Sc. , Ph. D. , E. J. Blain, B. Sc. , Ph. D. , B
V. I. Grishko, Ph. D. , R. Ho, Ph. D. , G. L. Wilson, Ph. D. , A. W
R. Murata, M. D. , K. Nakagawa, M. D. , Ph. D. , S. Ohtori, M. D. , Ph
Growth characterization of neo porcine cartilage pellets and their use in an interactive culture model  Carsten Lübke, Ph.D., Jochen Ringe, M.Sc., Veit.
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
Volume 98, Issue 6, Pages (March 2010)
Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression 
Volume 114, Issue 6, Pages (March 2018)
Removal of the superficial zone of bovine articular cartilage does not increase its frictional coefficient  R. Krishnan, M. Caligaris, R.L. Mauck, C.T.
High-bandwidth atomic force microscopy (AFM) based rheology of murine cartilage reveals degeneration of collagen IX knock out mice cartilage compared.
Collagen fibril stiffening in osteoarthritic cartilage of human beings revealed by atomic force microscopy  C.-Y. Wen, C.-B. Wu, B. Tang, T. Wang, C.-H.
J.L. Huebner, J.M. Williams, M. Deberg, Y. Henrotin, V.B. Kraus 
Differential transcriptome analysis of intraarticular lesional vs intact cartilage reveals new candidate genes in osteoarthritis pathophysiology  M. Geyer,
Focal Adhesion Kinase Stabilizes the Cytoskeleton
L. De Franceschi, Ph. D. , L. Roseti, Ph. D. , G. Desando, Ph. D. , A
E.M. Darling, Ph.D., S. Zauscher, Ph.D., F. Guilak, Ph.D. 
Altered expression of chondroitin sulfate structure modifying sulfotransferases in the articular cartilage from adult osteoarthritis and Kashin-Beck disease 
Topography and Mechanical Properties of Single Molecules of Type I Collagen Using Atomic Force Microscopy  Laurent Bozec, Michael Horton  Biophysical.
Tissue engineering with meniscus cells derived from surgical debris
Volume 86, Issue 5, Pages (May 2004)
Jamie L. Maciaszek, Biree Andemariam, Greg Huber, George Lykotrafitis 
I. G. Otterness, Ph. D. , M. -P. H. Le Graverand, M. D. , Ph. D. , F
Dynamic compression of single cells
Osteoarthritis year 2012 in review: biology
Volume 104, Issue 9, Pages (May 2013)
The detached osteochondral fragment as a source of cells for autologous chondrocyte implantation (ACI) in the ankle joint  S. Giannini, M.D., R. Buda,
The elastic modulus of articular cartilage at nano-scale and micro-scale measured using indentation type atomic force microscopy  P. Rahnamay Moshtagh,
Cyclodextrin polysulphates repress IL-1 and promote the accumulation of chondrocyte extracellular matrix  P. Verdonk, M.D., J. Wang, M.D., S. Groeneboer,
Bending and Puncturing the Influenza Lipid Envelope
Nanoscale Measurement of the Dielectric Constant of Supported Lipid Bilayers in Aqueous Solutions with Electrostatic Force Microscopy  G. Gramse, A. Dols-Perez,
Volume 74, Issue 3, Pages (March 1998)
Volume 110, Issue 12, Pages (June 2016)
Presentation transcript:

Surface ultrastructure and mechanical property of human chondrocyte revealed by atomic force microscopy  C.-H. Hsieh, Ph.D., Y.-H. Lin, Ph.D., S. Lin, Ph.D., J.-J. Tsai-Wu, Ph.D., C.H. Herbert Wu, Ph.D., C.-C. Jiang, Ph.D., M.D.  Osteoarthritis and Cartilage  Volume 16, Issue 4, Pages 480-488 (April 2008) DOI: 10.1016/j.joca.2007.08.004 Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Schematic shows a typical cycle for force measurement. Arrowheads indicate the relative position of the surface of the chondrocyte with respect to the tip of the AFM. For the approach (solid line), as the piezo-scanner is moved toward the tip of the AFM at constant velocity from point 1 to point 2, the attractive force pulls down the cantilever, which jumps to contact the surface at point 2. As the cantilever approaches the sample, it bends upward until it reaches point 3. For retraction (dotted line), when the tip reaches point 3, the piezo-scanner is moved away from the tip, and the cantilever begins to retract. As it does so, it bends downward until it reaches point 4. The tip–sample complex starts to break from point 4. A sharp, adhesive pull-off of approximately 150 pN, a specific tip–sample interaction, is observed in the retract trace. Finally, the cantilever returned to its original equilibrium state at point 1. Osteoarthritis and Cartilage 2008 16, 480-488DOI: (10.1016/j.joca.2007.08.004) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Observations with AFM. A chondrocyte is isolated from OA cartilage. Square indicates the isolation area (A). A single chondrocyte is displayed on the height image (B), phase image (C), and contour map (D). Scale bar=10mm. Osteoarthritis and Cartilage 2008 16, 480-488DOI: (10.1016/j.joca.2007.08.004) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Topographic AFM images of single old (A, C, and E) and young (B, D, and E) chondrocytes. Images were acquired by zooming to the maximum 100×100-μm scanned area (A and B, two-dimensional) and contour maps (C and D). Bar=10μm. Osteoarthritis and Cartilage 2008 16, 480-488DOI: (10.1016/j.joca.2007.08.004) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Force–distance curves acquired with three systems. With the tip-glass (A), no clear pull-off event was observed. The tip-OA (B) and tip-normal (C) chondrocyte systems demonstrated the relative stiffness of the cell surface (approach curve), with a noticeable adhesion force between the tip of the AFM and the cell surface (retraction curve). Osteoarthritis and Cartilage 2008 16, 480-488DOI: (10.1016/j.joca.2007.08.004) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Histograms and Gaussian distribution curves show differences in the adhesion forces of OA and normal chondrocytes; counts were 80 and 250, respectively. Measurements were based on a 10×10-μm scanned area. Osteoarthritis and Cartilage 2008 16, 480-488DOI: (10.1016/j.joca.2007.08.004) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Histograms and Gaussian distribution curves show stiffness measurements of OA and normal chondrocytes; counts were 80 and 250, respectively. Measurements were calculated from the slope of the approach curve. Osteoarthritis and Cartilage 2008 16, 480-488DOI: (10.1016/j.joca.2007.08.004) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 7 Fluorescence-activated cell-sorting (FACS) analysis of integrin β1 and type II collagen expression in the OA chondrocytes and in the normal chondrocytes. Donor: OA chondrocytes from 81-year-old patient, and normal chondrocytes from 24-year-old female. Histograms show the expression of integrin β1 (A and B) and type II collagen (C and D) in OA and normal chondrocytes. White curves: negative controls, gray curves: mAb-FITC or mAb-PE labeled cells. Abscissa: cell fluorescence intensity. Ordinates: events (cells) observed by the flow cytometer. Osteoarthritis and Cartilage 2008 16, 480-488DOI: (10.1016/j.joca.2007.08.004) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions