V.Navaneethakrishnan Dept. of ECE, CCET

Slides:



Advertisements
Similar presentations
Embedded Systems Design: A Unified Hardware/Software Introduction 1 Chapter 10: IC Technology.
Advertisements

Lecture 0: Introduction
VLSI Design Lecture 2: Basic Fabrication Steps and Layout
VLSI Design EE213 VLSI DesignStephen Daniels 2003 R Vss R Vo Inverter : basic requirement for producing a complete range of Logic circuits.
Introduction to CMOS VLSI Design Lecture 0: Introduction
Elettronica D. AA Digital Integrated Circuits© Prentice Hall 1995 Manufacturing Process CMOS Manufacturing Process.
Introduction Integrated circuits: many transistors on one chip.
Z. Feng VLSI Design 1.1 VLSI Design MOSFET Zhuo Feng.
Module-3 (MOS designs,Stick Diagrams,Designrules)
Introduction to CMOS VLSI Design CMOS Fabrication and Layout Harris, 2004 Updated by Li Chen, 2010.
STICK DIAGRAM EMT251. Schematic vs Layout In Out V DD GND Inverter circuit.
NMOS FABRICATION 1. Processing is carried out on a thin wafer cut from a single crystal of silicon of high purity into which the required p-impurities.
STICK DIAGRAM EMT251. Schematic vs Layout In Out V DD GND Inverter circuit.
Norhayati Soin 05 KEEE 4425 WEEK 7/1 23/8/2005 LECTURE 9: KEEE 4425 WEEK 7 CMOS LAYOUT AND STICK DIAGRAM (Cont’d)
CMOS VLSI Fabrication.
STICK DIAGRAM EMT251. Schematic vs Layout In Out V DD GND Inverter circuit.
CMOS FABRICATION.
EE141 Manufacturing 1 Chapter 2 Manufacturing Process and CMOS Circuit Layout 1 st rev. : March 7, nd rev. : April 10, 2003.
CMOS Fabrication EMT 251.
CMOS VLSI Design Lecture 2: Fabrication & Layout
Introduction to CMOS VLSI Design Lecture 0: Introduction.
1. Introduction. Diseño de Circuitos Digitales para Comunicaciones Introduction Integrated circuits: many transistors on one chip. Very Large Scale Integration.
Microelectronic Circuit Design McGraw-Hill Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock.
The Devices: MOS Transistor
Chapter 6 The Field Effect Transistor
S.N.Bhat, Faculty, Dept. of E&C Engineering, M.I.T Manipal
CHAPTER 4: MOS AND CMOS IC DESIGN
IC Manufactured Done by: Engineer Ahmad Haitham.
Day 12: October 4, 2010 Layout and Area
CMOS Fabrication CMOS transistors are fabricated on silicon wafer
Field Effect Transistors: Operation, Circuit Models, and Applications
MOS Field-Effect Transistors (MOSFETs)
Subject Name: Fundamentals Of CMOS VLSI Subject Code: 10EC56
DC Characteristics of a CMOS Inverter
Manufacturing Process I
DMT 241 – Introduction to IC Layout
Prof. Haung, Jung-Tang NTUTL
STICK Diagrams UNIT III : VLSI CIRCUIT DESIGN PROCESSES VLSI DESIGN
Chapter 1 & Chapter 3.
Design Rule EMT 251.
CMOS Inverter First Glance
VLSI Design MOSFET Scaling and CMOS Latch Up
Design Rules.
ENG2410 Digital Design “CMOS Technology”
Digital Integrated Circuits A Design Perspective
Lecture 19 OUTLINE The MOSFET: Structure and operation
Chapter 10: IC Technology
NMOS Inverter UNIT II : BASIC ELECTRICAL PROPERTIES Sreenivasa Rao CH
Lecture #25 OUTLINE Device isolation methods Electrical contacts to Si
Qualitative Discussion of MOS Transistors
Design Technologies Custom Std Cell Performance Gate Array FPGA Cost.
Basic electrical properties
Introduction to Layout Inverter Layout Example Layout Design Rules
Prof. Hsien-Hsin Sean Lee
CMOS半導體製程概念 INVERTER.
Manufacturing Process I
VLSI Lay-out Design.
Click the LH mouse button to begin the animation
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Chapter 10: IC Technology
MOS Transistors CMOS Inverter and Logic Families
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Manufacturing Process I
CMOS Layers n-well process p-well process Twin-tub process.
Chapter 10: IC Technology
Dr. Hari Kishore Kakarla ECE
Chapter 4 Field-Effect Transistors
Presentation transcript:

V.Navaneethakrishnan Dept. of ECE, CCET VLSI Lay-out Design V.Navaneethakrishnan Dept. of ECE, CCET

VLSI DESIGN Custom Design Semi-Custom Design Standard Cell Gate Array Programmable Devices PLA/PAL CPLD FPGA SOC

Fabrication Process begins with silicon wafers basically formed out of sand

A series of process steps, including epitaxial growth, dielectric and metal layer depositions, oxidation, diffusion, ion implantation and several steps of Lithography …. then follow

……………………………………… ……………………………………… ……………………………………… ……………………………………… 1. 2. 3. Substrate p Thick oxide (1m) ……………………………………… ……………………………………… p Photoresist ……………………………………… ……………………………………… p

……………………………………… ……………………………………… ……………………………………… 4. 5. UV light Mask p Window in oxide ……………………………………… ……………………………………… p

……………………………………… ……………………………………… ……………………………………… ……………………………………… ………… 6. 7. ……………………………………… Patterned Poly. (1-2 m) On thin oxide ( 800-1000A0 ) ……………………………………… ……………………………………… ……………………………………… p n+ diffusion (1 m deep) ………… ………… ……………………………………… ……………………………………… …… …… p

…… ………… …… ………… …… …… ……. ………… ………… ………… ………… …… ………… …… ………… 8. …… ………… …… ………… …… …… ……. ………… ………… ………… ………… Contact holes (cuts) …… ………… …… ………… ……………………………………… ……………………………………… p 9. …… ………… …… ………… …… …… ……. Patterned Metallization (aluminum 1 m) ………… ………… ………… ………… …… ………… …… ………… ……………………………………… ……………………………………… p

Drain-to-source current Ids versus voltage Vds relationship nMOS Transistor structure: Gate Drain W D Source L Charge induced in channel (Qc) Electron transit time() Ids = Isd = (1) Length of channel (L) Velocity(v) sd = First, transit time:

Pass transistor And gate : VDD X A B C X = A.B.C (Logic 1 = VDD – Vt ) nMOS inverter : Vin Vout VDD GND

nMOS depletion mode transistor pull-up and transfer characteristic Vout Vt Vin Vout VDD GND No current Current flows Non-zero output Vin

4. Complementary transistor pull-up (CMOS) : No current flow either for logical 0 or for logical 1 inputs. Full logical 1 and 0 levels are presented at the output. For devices of similar dimensions the p-channel is slower than the n-channel device. Vout Vtn Vtp VDD VDD p (ii) Transfer characteristic p on n off Vout both on Vin n p off n on Vin VSS VSS VDD (i) Circuit Regions Current (between ralls) 1 2 3 4 5 (iii) CMOS inverter Current versus Vin Vin

An improved BiMOS inverter using MOS transistors for base current discharge VDD T4 T2 Vin T5 Vout T3 T1 CL T6 GND VSS

… … ……………………………………… …… ………… …… 1. 2. SiO2 p-well (4-5 m) Thin oxide Polysilicon 2. …… ………… …… Thin oxide and polysilicon p n

…… ………… …… …… ………… …… 3. 4. P+ mask (positive) P+ mask (negative) p-diffusion P+ mask (positive) 3. …… ………… …… p n P+ mask (negative) n-diffusion 4. …… ………… …… p n

CMOS p-well inverter showing VDD and VSS substrate connections Polysilicon Oxide n-diffusion P-diffusion Vin Vout VDD VSS p n CMOS p-well inverter showing VDD and VSS substrate connections

CMOS n-well inverter showing VDD and VSS substrate connections Polysilicon Oxide n-diffusion P-diffusion Vin Vout VDD VSS n p CMOS n-well inverter showing VDD and VSS substrate connections

( A logical extension of the p-well and n-well) Polysilicon Oxide n-diffusion P-diffusion Vin Vout VDD VSS Epitaxial layer n well p well n substrate Twin-tub structure ( A logical extension of the p-well and n-well)

Encodings for a simple single metal nMOS process Stick diagram Encodings for a simple single metal nMOS process COLOR STICK ENCODING LAYERS MASK LAYOUT ENCODING CIF LAYER MONOCROME GREEN RED BLUE BLACK GRAY n-diffusion n+active Thniox Polysilicon Metal 1 Contact cut Overglass NOT APPLICABLE nMOS ONLY YELLOW Implant Buried contact nMOS ONLY BROWN ND NP NM NC NG NI NB

Lamda-based design rules Minimum separation Minimum width n-diffusion p-diffusion 2 3 2 1 1 2 2 Metal 1 Minimum width 2 3 3 Metal 2 3 4 4 4

Transistor design rules nMOS (enhancement) pMOS (enhancement) nMOS (depletion) Separation from contact cut to transistor Implant for an nMOS depletion mode transistor to extend 2 minimum beyond channel in all directions 2 minimum Separation from implant to another transistor 2 minimum

Stick diagram and layout for nMOS shift register cell Lamba VDD 25 20 4:1 15 2:1 10 GND 5 2 2 2 5 10 15 20 25 Lamba

Stick diagram and layout for nMOS shift register cell Lamba VDD 25 20 4:1 15 2:1 10 GND 5 2 2 2 5 10 15 20 25 Lamba

Two way selector with enable X O/P Y A A’ E X O/P Y A A’ E

Thank You !!!