N*ews from COSY May 2011 | Hans Ströher (Forschungszentrum Jülich, Germany)

Slides:



Advertisements
Similar presentations
The Hadron Physics Program at COSY-ANKE: selected results
Advertisements

Izabella Zychor EPIPHANY, Krakow, January 6-8, Hyperon production in pp collisions with ANKE at COSY I. Zychor ( IPJ Świerk ) for the ANKE Collaboration.
Mitglied der Helmholtz-Gemeinschaft TSU HEPI Double-polarised np-scattering experiments at ANKE David Mchedlishvili for the ANKE collaboration HEPI, Tbilisi.
Mitglied der Helmholtz-Gemeinschaft PAX Polarized Antiprotons 2nd Meeting FAIR Experiments February 25, 2009 | Hans Ströher (FZ-Jülich)
STORI’02Carsten Schwarz Physics with p at the Future GSI Facility Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR High.
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
Proton polarization measurements in π° photo-production --On behalf of the Jefferson Lab Hall C GEp-III and GEp-2γ collaboration Wei Luo Lanzhou University.
Working Group 5 Summary David Christian Fermilab.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction: Polarisation Transfer & Cross-Section Measurements.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Hartmut Machner, MENU04 Beijing 1 Physics at COSY - up to 3.6 GeV/c - e and stochastic cooling, - stochastic extraction (10 s - min) - luminosity achieved:
Mitglied der Helmholtz-Gemeinschaft Petersburg Nuclear Physics Institute, Russia Storage cells for internal experiments with Atomic Beam Source at the.
Study of hadron properties in cold nuclear matter with HADES Pavel Tlustý, Nuclear Physics Institute, Řež, Czech Republic for the HADES Collaboration ,
Antiproton Physics Experiments Keith Gollwitzer -- Fermilab Antiproton Sources Accumulator Antiproton Physics Experiments –Precision measurements Method.
Kinematics of  + n   p   0  p reaction Susumu Oda 2007/04/10-19.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR P.
Mitglied der Helmholtz-Gemeinschaft TSU TBILISI STATE UNIVERSITY The pn-system Study at Internal ANKE Experiment HEPI, Tbilisi State University IKP, Forschungszentrum.
New Observations on Light Hadron Spectroscopy at BESIII Yanping HUANG For BESIII Collaboration Institute of High Energy Physics (IHEP) ICHEP2010, Paris,
1 Tomoaki Hotta (RCNP, Osaka Univ.) for The LEPS Collaboration Cracow Epiphany Conference, Jan 6, 2005 Introduction LEPS experiment Results from new LD.
October 14, 2004 Single Spin Asymmetries 1 Single Spin Asymmetries for charged pions. Overview  One physics slide  What is measured, kinematic variables.
Mitglied der Helmholtz-Gemeinschaft The ANKE Experiments at COSY: physics program and technical development (including future plans) Andro Kacharava (IKP,
1 Pion production in np collisions at 1.25AGeV A.Kurilkin, P.Kurilkin, V.Ladygin, A.Ierusalimov, T.Vasiliev, LHEP-JINR, Dubna, Russia For the HADES collaboration.
Nucleon Form Factors and the BLAST Experiment at MIT-Bates
Mitglied der Helmholtz-Gemeinschaft Physics at COSY-Jülich December 2010 | Hans Ströher (Forschungszentrum Jülich, Univ. Cologne) Baryons´10, Osaka (Japan),
Markus Büscher, HYP Strangeness COSY Proton Induced Strangeness Production on Protons and Nuclei Near Threshold Markus Büscher Forschungszentrum.
Λ and Σ photoproduction on the neutron Pawel Nadel-Turonski The George Washington University for the CLAS Collaboration.
Spin transfer coefficient K LL’ in  photoproduction at HERMES D. Veretennikov On behalf of the HERMES collaboration DIS08, London.
Beijing, Sept 2nd 2004 Rachele Di Salvo Beam asymmetry in meson photoproduction on deuteron targets at GRAAL MENU2004 Meson-Nucleon Physics and the Structure.
The Polarized Internal Target at ANKE: First Results Kirill Grigoryev Institut für Kernphysik, Forschungszentrum Jülich PhD student from Petersburg Nuclear.
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
Search for the  + in photoproduction experiments at CLAS APS spring meeting (Dallas) April 22, 2006 Ken Hicks (Ohio University) for the CLAS Collaboration.
NSTAR2011, Jefferson Lab, USA May 17-20, 2011 Mitglied der Helmholtz-Gemeinschaft Tamer Tolba for the WASA-at-COSY collaboration Institut für Kernphysik.
1 Quarkonium Production at J-PARC Quarkonium Production at J-PARC with Unpolarized Proton Beam Quarkonium Production at J-PARC with Polarized Beam and.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
Institut für Kernphysik V.Hejny1CSB Workshop Trento / June 13-17, 2005 Understanding dd  4 He  0 Experimental Studies at COSY V. Hejny Institut für Kernphysik.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
Double-Pionic Fusion in Nucleon Collisions on Few Body Systems - The ABC Effect and its Possible Origin Wasa-at-Cosy Celsius Wasa.
at Forschungszentrum Jülich
The η Rare Decays in Hall D
ICNPF 2013, Crete, Aug. 28 – Sept. 5, 2013 JEDI - The Jülich Electric Dipole Moment Investigations in Storage Rings | H. Ströher.
Exclusive w/h production in pp collisions at Ekin=3.5 GeV with HADES
Electric Dipole Moments: Searches at Storage Rings
Explore the new QCD frontier: strong color fields in nuclei
David Mchedlishvili for the ANKE collaboration
at Forschungszentrum Jülich
Center for Nuclear Study, University of Tokyo
at Forschungszentrum Jülich
Recent results on light hadron spectroscopy at BES
Plans for nucleon structure studies at PANDA
Analysis Report Haiyun Lu.
Matteo Negrini Università degli Studi di Ferrara - INFN
Electric Dipole Moments: Searches at Storage Rings
L*(1520) Photoproduction off Proton and Neutron from CLAS eg3 data set
Marcin Zieliński Paweł Moskal Andrzej Kupść
Dibaryon production and structure
Studies of Strange Sea Distribution Functions using Kaons with CLAS12
Search for Electric Dipole Moments: The JEDI-Project at Jülich
Dibaryons at CLAS Mikhail Bashkanov.
Study of the 3He-η System in d-p Collisions
N* Program at COSY April 19, 2009 | Hans Ströher (FZ-Jülich)
NKS2 Meeting with Bydzovsky NKS2 Experiment / Analysis Status
Wasa-at-Cosy The ABC Effect in Double-Pionic Nuclear Fusion and a pn Resonance as its Possible Origin.
What can we learn about X resonances at K1.8
The np -> d p0 reaction measured with g11 data
Michael Dugger* Arizona State University
Proposal for an Experiment: Photoproduction of Neutral Kaons on Deuterium Spokespersons: D. M. Manley (Kent State University) W. J. Briscoe (The George.
f- meson production in pN collisions close to threshold
Deuteron Polarimetry at COSY
Presentation transcript:

N*ews from COSY May 2011 | Hans Ströher (Forschungszentrum Jülich, Germany)

Selected recent results N*ews from COSY – Outline COSY-facility Detection systems Selected recent results 2 2

COSY N*ews from COSY – Storage Ring Cooler and storage ring for (polarized) protons and deuterons p = 0.3 – 3.7 GeV/c Phase space cooled internal & extracted beams COSY e-Cooler Injector cyclotron 3

… the machine for spin physics N*ews from COSY – Storage Ring Cooler and storage ring for (polarized) protons and deuterons p = 0.3 – 3.7 GeV/c Phase space cooled internal & extracted beams COSY e-Cooler … the machine for spin physics with hadron beams Injector cyclotron 4

N*ews from COSY – Experiments Hadron physics with hadronic probes Experimental set-ups: ANKE WASA EDM TOF NEW: PAX WASA ANKE EDM PAX TOF

N*ews from COSY – Experiments Hadron physics with hadronic probes Experimental set-ups: ANKE WASA EDM TOF NEW: PAX WASA ANKE EDM PAX TOF Future plan/project: srEDM

N*ews from COSY – Experiments ANKE: forward magnetic spectrometer solid, gas-jet, polarized targets double polarization experiments TOF: large acceptance non-magnetic det. liquid hydrogen, deuterium targets (non-)strange meson, hyperon prod. WASA: ~4p electromagnetic calorimeter thin superconducting solenoid hydrogen, deuterium pellet target symmetries and symmetry violation

N*ews from COSY – Experiments ANKE: forward magnetic spectrometer solid, gas-jet, polarized targets double polarization experiments TOF: large acceptance non-magnetic det. liquid hydrogen, deuterium targets (non-)strange meson, hyperon prod. WASA: ~4p electromagnetic calorimeter thin superconducting solenoid hydrogen, deuterium pellet target symmetries and symmetry violation

N*ews from COSY – Experiments ANKE: forward magnetic spectrometer solid, gas-jet, polarized targets double polarization experiments TOF: large acceptance non-magnetic det. liquid hydrogen, deuterium targets (non-)strange meson, hyperon prod. WASA: ~4p electromagnetic calorimeter thin superconducting solenoid hydrogen, deuterium pellet target symmetries and symmetry violation

COSY N*ews from COSY – General N N  N N*  [N N] X (= g, p, h, …) NN fusion: p N(+)  (N N*)+(+)  d p(+) D-resonance Mostly: no resonance structure, since 3(4)-body phase-space & strong FSI  invariant mass distributions COSY HADES at GSI 10 10

COSY N*ews from COSY – General N N  N N*  [N N] X (= g, p, h, …) Special cases, e.g. p p  p p p0p0 Roper COSY WASA at CELSIUS 11 11

COSY N*ews from COSY – General N N  N N*  N K Y (hyperons) Isospin (-filter): K L only N* resonances, e.g. N*(1650, 1675, 1680,1700, 1710, 1720, 1840, 1875, 1900) K S both N* and D* resonances, e.g. D*(1600, 1620, 1700, 1750, 1900) Polarization (target, beam): K+, p, L asymmetries, L polarization COSY 12 12

N*ews from COSY – Results (I) p p  p K+ Y0 (Y0 = L, S0) TOF 13 13

N*ews from COSY – pp  pK+ (L;S0) Reaction: pp  p K+ (p p-) 3 beam energies: pp = 2.95 GeV/c (QL = 204, QS = 124 MeV); 3.06 GeV/c (239, 162 MeV); 3.20 GeV/c (284, 207 MeV) Primary and secondary V-shape; charged multiplicity jump; ToF 14

N*ews from COSY – pp  pK+ (L;S0) Reaction: pp  p K+ (p p-) 3 beam energies: pp = 2.95 GeV/c (QL = 204, QS = 124 MeV); 3.06 GeV/c (239, 162 MeV); 3.20 GeV/c (284, 207 MeV) Primary and secondary V-shape; charged multiplicity jump; ToF Result: (1) COSY-TOF collaboration, EPJ A 46, 27 – 44 (2010) 15

N*ews from COSY – pp  pK+ (L;S0) Reaction: pp  p K+ (p p-) 3 beam energies: pp = 2.95 GeV/c (QL = 204, QS = 124 MeV); 3.06 GeV/c (239, 162 MeV); 3.20 GeV/c (284, 207 MeV) Primary and secondary V-shape; charged multiplicity jump; ToF Result: (2) L case (239 MeV): complete coverage cms frame: cos(q)= 0 symmetric Jackson-frames helicity-frames 16

N*ews from COSY – pp  pK+ (L;S0) Reaction: pp  p K+ (p p-) 3 beam energies: pp = 2.95 GeV/c (QL = 204, QS = 124 MeV); 3.06 GeV/c (239, 162 MeV); 3.20 GeV/c (284, 207 MeV) Primary and secondary V-shape; charged multiplicity jump; ToF Result: (3) helicity-frames: strong evidence for: N*(1650)S11 N*(1710)P11 and/or N*(1720)P13 unlikely: N*(1675)D15 N*(1680)F15 N*(1700)D13 pL K+p 17

N*ews from COSY – pp  pK+ (L;S0) Reaction: pp  p K+ (p p-) 3 beam energies: pp = 2.95 GeV/c (QL = 204 MeV); 3.20 GeV/c (284 MeV) 3.30 GeV/c (316 MeV) Primary and secondary V-shape; charged multiplicity jump; ToF Result: (3) COSY-TOF collaboration, PL B 688, 142 (2010) Dalitz-plot analysis Importance of N*(1650) compared to N*(1710) N*(1720) 2.85 GeV/c … TOF (2006) 18

N*ews from COSY – pp  pK+ (L;S0) Reaction: pp  p K+ (p p-) 3 beam energies: pp = 2.95 GeV/c (QL = 204, QS = 124 MeV); 3.06 GeV/c (239, 162 MeV); 3.20 GeV/c (284, 207 MeV) Primary and secondary V-shape; charged multiplicity jump; ToF Result: (4) S0 case (162 MeV): complete coverage small statistics cms frame Jackson-frames helicity-frames differences to L 19

N*ews from COSY – pp  pK+ (L;S0) Next: additional high-statistics data  PWA (i) upgraded detector (STT) (ii) polarized proton beam (2.95 GeV/c) pb = 2.95 GeV/c P = (61 +- 2) % 20

N*ews from COSY – pp  pK+ (L;S0) Next: additional high-statistics data  PWA (i) upgraded detector (STT) (ii) polarized proton beam (2.95 GeV/c) PAC39 (May 2011) allocated 9 weeks to finalize physics program; after that TOF will be decomissioned in 2012. pb = 2.95 GeV/c P = (61 +- 2) % 21

N*ews from COSY – Results (II) p p  n K+ S+ ANKE, COSY-11 HIRES 22 22

N*ews from COSY – pp  n K+ S+ Reaction: pp  K+ n X (COSY-11) pp  K+ X ; (K+p) X ; (K+p+) X (ANKE) pp  K+ X (HIRES) Result: (1) COSY-11 collaboration, PL B 643, 251 (2006) ANKE collaboration, PR C81, 045208 (2010) HIRES collaboration, PL B 692, 10 (2011) Disappointing expt´l situation, but: very high X-section clearly excluded  no D* ++ (1620) contribution needed s [µb] 23

N*ews from COSY – Results (III) p p  p p w (Resonances?) TOF 24 24

N*ews from COSY – pp  pp w Reaction: pp  p p p+p- X 3 beam energies: pp = 2.95 GeV/c (Qw = 92 MeV); 3.06 GeV/c (128 MeV) 3.20 GeV/c (173 MeV) 4 charged particles; ToF; missing p0 Result: (1) COSY-TOF collaboration, EPJ A 44, 7 (2010) w via missing mass „… no obvious indication of w- production via N* resonances found …“ 25

N*ews from COSY – Results (IV) p p  {pp}s g (D(1232)) ANKE 26 26

N*ews from COSY – pp  {pp}s g Reaction: pp  pp X (X = g, p0) 6 beam energies: Tp = 353 … 800 MeV 2 protons, DEpp < 3MeV  1S0 (Diproton); qlab < 20° Result: (1) ANKE collaboration, J.Phys. G 37, 105005 (2010) missing mass analysis p0 dominating; clear g-contribution 27

N*ews from COSY – pp  {pp}s g Reaction: pp  pp X (X = g, p0) 6 beam energies: Tp = 353 … 800 MeV 2 protons, DEpp < 3MeV  1S0 (Diproton); qlab < 20° Result: (2) energy dependence shows resonant behavior; comparison with pn  d g D-resonance shifted, smaller width (note: no M1 possible) WASA/Promise result (Uppsala) – covers much larger angular range 28

p n  d p0p0 (ABC-Effect) WASA N*ews from COSY – Results (V) May 18,2011 - Session II-C (15:20) T. Tolba; „Double pion production in pp-interactions at Tp = 1.4 GeV“ 29 29

N*ews from COSY – pp  pp p0p0 high energies near threshold pp→pN*(1440) pp→∆ ∆(1232) p π p π π ∆ (1232) π p π 30

N*ews from COSY – pn  d p0p0 Reaction: pd  d p0p0 pspectator ; d and p0p0 detected 3 beam energies: Tp = 1.0, 1.2, 1.4 GeV; Fermi momentum Effective energy ranges: 2.22 – 2.36; 2.33 – 2.44; 2.42 – 2.56 GeV Result: (1) WASA-Collaboration, submitted PRL (2011) 31

N*ews from COSY – pn  d p0p0 Reaction: pd  d p0p0 pspectator ; d and p0p0 detected 3 beam energies: Tp = 1.0, 1.2, 1.4 GeV; Fermi momentum Effective energy ranges: 2.22 – 2.36; 2.33 – 2.44; 2.42 – 2.56 GeV Result: (2) Maximum (2.38 GeV) Off-peak (2.50 GeV) 32

N*ews from COSY – pn  d p0p0 Reaction: pd  d p0p0 pspectator ; d and p0p0 detected 3 beam energies: Tp = 1.0, 1.2, 1.4 GeV; Fermi momentum Effective energy ranges: 2.22 – 2.36; 2.33 – 2.44; 2.42 – 2.56 GeV Result: (2) 33

N*ews from COSY – pn  d p0p0 Reaction: pd  d p0p0 pspectator ; d and p0p0 detected 3 beam energies: Tp = 1.0, 1.2, 1.4 GeV; Fermi momentum Effective energy ranges: 2.22 – 2.36; 2.33 – 2.44; 2.42 – 2.56 GeV Result: (3) What is this? independently normalized Mass ~ M(DD) - 80 MeV Width ~ ¼ of G(DD) 34

N*ews from COSY – pn  d p0p0 Reaction: pd  d p0p0 pspectator ; d and p0p0 detected 3 beam energies: Tp = 1.0, 1.2, 1.4 GeV; Fermi momentum Effective energy ranges: 2.22 – 2.36; 2.33 – 2.44; 2.42 – 2.56 GeV Result: (3) Roper-contribution (R  Dp  Npp) 35

N*ews from COSY – pn  d p0p0 Reaction: pd  d p0p0 pspectator ; d and p0p0 detected 3 beam energies: Tp = 1.0, 1.2, 1.4 GeV; Fermi momentum Effective energy ranges: 2.22 – 2.36; 2.33 – 2.44; 2.42 – 2.56 GeV Result: (3) t-channel DD-contribution (from pp  d p+p0 via isospin) 36

N*ews from COSY – pn  d p0p0 Reaction: pd  d p0p0 pspectator ; d and p0p0 detected 3 beam energies: Tp = 1.0, 1.2, 1.4 GeV; Fermi momentum Effective energy ranges: 2.22 – 2.36; 2.33 – 2.44; 2.42 – 2.56 GeV Result: (3) s-channel resonance at M = 2.37 GeV and G = 68 MeV 37

N*ews from COSY – pn  d p0p0 Reaction: pd  d p0p0 pspectator ; d and p0p0 detected 3 beam energies: Tp = 1.0, 1.2, 1.4 GeV; Fermi momentum Effective energy ranges: 2.22 – 2.36; 2.33 – 2.44; 2.42 – 2.56 GeV Result: (4) Next: (i) pn  pn p0p0, (ii) pol. d-beam (i.e. np  d p0p0), (iii) pn elastic pn  R(3+)  DD  dp0p0 J=3 J=1 38

N*ews from COSY – Summary Part of the ongoing COSY program devoted to N* physics (NN- and NY-interaction (ANKE, TOF), symmetries (WASA), …) Hyperon production at TOF  extension to pol. beams  PWA ABC-resonance at WASA  nature (s-channel resonance?) 39

N*ews from COSY – Summary Part of the ongoing COSY program devoted to N* physics (NN- and NY-interaction (ANKE, TOF), symmetries (WASA), …) Hyperon production at TOF  extension to pol. beams  PWA ABC-resonance at WASA  nature (s-channel resonance?) 40

N*ews from COSY – Information pp  pp m 41 41