Treatment of full thickness focal cartilage lesions with a metallic resurfacing implant in a sheep animal model, 1 year evaluation  N. Martinez-Carranza,

Slides:



Advertisements
Similar presentations
X. I. Gu, P. E. Palacio-Mancheno, D. J. Leong, Y. A. Borisov, E
Advertisements

Effect of interval-training exercise on subchondral bone in a chemically-induced osteoarthritis model  A. Boudenot, N. Presle, R. Uzbekov, H. Toumi, S.
Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running  T.J. Mosher, Y. Liu, C.M. Torok 
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
J. A. Waung, S. A. Maynard, S. Gopal, A. Gogakos, J. G. Logan, G. R
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Knee osteoarthritis patients with severe nocturnal pain have altered proximal tibial subchondral bone mineral density  W.D. Burnett, S.A. Kontulainen,
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Considerations in measuring cartilage thickness using MRI: factors influencing reproducibility and accuracy  S. Koo, M.S., G.E. Gold, M.D., T.P. Andriacchi,
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation.
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
J.H. Koolstra  Osteoarthritis and Cartilage 
Cartilage degeneration in the goat knee caused by treating localized cartilage defects with metal implants  R.J.H. Custers, W.J.A. Dhert, D.B.F. Saris,
An in vivo cross-linkable hyaluronan gel with inherent anti-inflammatory properties reduces OA cartilage destruction in female mice subjected to cruciate.
Activation of a chondrocyte volume-sensitive Cl− conductance prior to macroscopic cartilage lesion formation in the rabbit knee anterior cruciate ligament.
ADAMTS5−/− mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage.
Protective effect of a new biomaterial against the development of experimental osteoarthritis lesions in rabbit: a pilot study evaluating the intra-articular.
K. Murata, N. Kanemura, T. Kokubun, T. Fujino, Y. Morishita, K
Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis  H. Mitsuyama, M.D., Ph.D., R.M. Healey, B.S.,
Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee  S.T. Soellner, A. Goldmann, D. Muelheims,
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Cartilage and bone changes during development of post-traumatic osteoarthritis in selected LGXSM recombinant inbred mice  S. Hashimoto, M.F. Rai, K.L.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Cartilage damage pattern in relation to subchondral plate thickness in a collagenase- induced model of osteoarthritis  S.M. Botter, M.Sc., G.J.V.M. van.
Knee joint ultrasonography of the ACLT rabbit experimental model of osteoarthritis: relevance and effectiveness in detecting meniscal lesions  C. Boulocher,
Quantitative assessment of articular cartilage morphology via EPIC-μCT
Measurement accuracy of focal cartilage defects from MRI and correlation of MRI graded lesions with histology: a preliminary study  Chris A McGibbon,
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the guinea pig  V.B. Kraus, J.L. Huebner, J. DeGroot,
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
Chondroprotective effects of high-molecular-weight cross-linked hyaluronic acid in a rabbit knee osteoarthritis model  S. Elmorsy, T. Funakoshi, F. Sasazawa,
Spontaneous osteoarthritis in Str/ort mice is unlikely due to greater vulnerability to mechanical trauma  B. Poulet, T.A.T. Westerhof, R.W. Hamilton,
Monoiodoacetic acid induces arthritis and synovitis in rats in a dose- and time- dependent manner: proposed model-specific scoring systems  M. Udo, T.
Biomechanical, histologic and macroscopic assessment of articular cartilage in a sheep model of osteoarthritis  S.P. Oakley, M.N. Lassere, I. Portek,
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
Protective effects of a cathepsin K inhibitor, SB , in the canine partial medial meniscectomy model of osteoarthritis  J.R. Connor, C. LePage, B.A.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat  N. Gerwin, A.M. Bendele, S. Glasson,
Potential mechanism of alendronate inhibition of osteophyte formation in the rat model of post-traumatic osteoarthritis: evaluation of elemental strontium.
Deficiency of hyaluronan synthase 1 (Has1) results in chronic joint inflammation and widespread intra-articular fibrosis in a murine model of knee joint.
Cyclodextrin polysulphate protects articular cartilage in experimental lapine knee osteoarthritis  S. Groeneboer, M.Sc., P. Pastoureau, M.D., Ph.D., E.
M. A. McNulty, R. F. Loeser, C. Davey, M. F. Callahan, C. M
P. -H. Tsai, M. -C. Chou, H. -S. Lee, C. -H. Lee, H. -W. Chung, Y. -C
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Automatic morphometric cartilage quantification in the medial tibial plateau from MRI for osteoarthritis grading  E.B. Dam, Ph.D., J. Folkesson, M.Sc.,
M. R. Doschak, Ph. D. , J. M. LaMothe, Ph. D. , D. M. L. Cooper, B. Sc
N. Martinez-Carranza, H. E. Berg, A. -S. Lagerstedt, H. Nurmi-Sandh, P
Utility of T2 mapping and dGEMRIC for evaluation of cartilage repair after allograft chondrocyte implantation in a rabbit model  J. Endo, A. Watanabe,
K.H. Collins, R.A. Reimer, R.A. Seerattan, T.R. Leonard, W. Herzog 
Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog  J.L. Cook, K. Kuroki, D. Visco, J.-P.
Spectrocolorimetric evaluation of human articular cartilage
Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression 
Articular damage caused by metal plugs in a rabbit model for treatment of localized cartilage defects  R.J.H. Custers, M.D., W.J.A. Dhert, M.D., Ph.D.,
N. Männicke, M. Schöne, M. Oelze, K. Raum  Osteoarthritis and Cartilage 
Cartilaginous repair of full-thickness articular cartilage defects is induced by the intermittent activation of PTH/PTHrP signaling  S. Kudo, H. Mizuta,
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
Focal knee resurfacing and effects of surgical precision on opposing cartilage. A pilot study on 12 sheep  N. Martinez-Carranza, H.E. Berg, K. Hultenby,
Sagittal alignment and mobility of the thoracolumbar spine are associated with radiographic progression of secondary hip osteoarthritis  H. Tateuchi,
R. Parekh, M.K. Lorenzo, S.Y. Shin, A. Pozzi, A.L. Clark 
Matrix-associated autologous chondrocyte transplantation in a compartmentalized early stage of osteoarthritis  M. Schinhan, M. Gruber, R. Dorotka, M.
Lower cervical spine facet cartilage thickness mapping
Surface roughness and thickness analysis of contrast-enhanced articular cartilage using mesh parameterization  T. Maerz, M.D. Newton, H.W.T. Matthew,
Increased presence of cells with multiple elongated processes in osteoarthritic femoral head cartilage  I. Holloway, M. Kayser, D.A. Lee, D.L. Bader,
The canine ‘groove’ model of osteoarthritis is more than simply the expression of surgically applied damage  Simon C. Mastbergen, M.Sc., Anne C. Marijnissen,
Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis 
A. Sophocleous, A.E. Börjesson, D.M. Salter, S.H. Ralston 
Daily cumulative hip moment is associated with radiographic progression of secondary hip osteoarthritis  H. Tateuchi, Y. Koyama, H. Akiyama, K. Goto,
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
W.J. Anderst, M.S., C. Les, D.V.M., Ph.D., S. Tashman, Ph.D. 
Presentation transcript:

Treatment of full thickness focal cartilage lesions with a metallic resurfacing implant in a sheep animal model, 1 year evaluation  N. Martinez-Carranza, L. Ryd, K. Hultenby, H. Hedlund, H. Nurmi-Sandh, A.S. Lagerstedt, P. Schupbach, H.E. Berg  Osteoarthritis and Cartilage  Volume 24, Issue 3, Pages 484-493 (March 2016) DOI: 10.1016/j.joca.2015.09.009 Copyright © 2015 The Authors Terms and Conditions

Fig. 1 (a) Shows the second generation Ti-HA double-coated Co–Cr monobloc implant, characterized by a double contoured articulating surface (Episealer, Episurf medical AB, Stockholm). (b) CAD/CAM modeled aiming device designed for a “standard” sheep. (c) Medial femoral condyle of the sheep knee and final implant position in situ at 1 year. (d) Shows the third generation aiming device in vivo. Osteoarthritis and Cartilage 2016 24, 484-493DOI: (10.1016/j.joca.2015.09.009) Copyright © 2015 The Authors Terms and Conditions

Fig. 2 Postoperative laser measurements used to evaluate implant position. The red circles show the radius of the original cartilage (white color), purple line show the radius of the implant surface (silver). The difference between these radii at the marked data points on the implant (blue dots) are then used to calculate the average implant height (μm) and tilt in relation to surrounding cartilage in the (a) frontal and (b) sagittal plane. (Courtesy of LK Skandinavia AB). Osteoarthritis and Cartilage 2016 24, 484-493DOI: (10.1016/j.joca.2015.09.009) Copyright © 2015 The Authors Terms and Conditions

Fig. 3 High-resolution photographs used to evaluate macroscopical cartilage damage in two implanted knees (left panel) and the non-operated control knee (right panel). Observe the modest difference in gross macroscopical appearance between a case with minor histological changes (upper row) and a case with histologically more severe cartilage damage (lower row). Osteoarthritis and Cartilage 2016 24, 484-493DOI: (10.1016/j.joca.2015.09.009) Copyright © 2015 The Authors Terms and Conditions

Fig. 4 (a) Photomicrograph illustrating the histometric analysis using backscatter scanning electron microscopy of the double-coated (Ti-HA) implant inserted in the medial femoral condyle. (b) Scanning electron microscopy photomicrograph of the double coating Ti-HA implant surface. Bar denotes 100 μm. Osteoarthritis and Cartilage 2016 24, 484-493DOI: (10.1016/j.joca.2015.09.009) Copyright © 2015 The Authors Terms and Conditions

Fig. 5 (a) Raw data of the implant position in terms of averaged height (in millimeters); (zero denotes the cartilage level). Observe that the implants are aimed at an ideal position of 0.5 mm recessed. Tilt (angulation) of the implants in relation to surrounding cartilage is shown in the (b) frontal (transversal) and (c) sagittal (antero-posterior) plane respectively (y-axis denotes tilt in degrees). Individual values are scattered along the x-axis. Osteoarthritis and Cartilage 2016 24, 484-493DOI: (10.1016/j.joca.2015.09.009) Copyright © 2015 The Authors Terms and Conditions

Fig. 6 Cross-sectional histological pictures (safranin blue) of the tibial cartilage opposing the implant (left panel), and opposing the non-operated control knee (right panel). Scale bar denotes 1 mm. Rows represent 2–6 year old sheep. Observe the increasing degree of cartilage damage of both operated and non-operated knees with age. Osteoarthritis and Cartilage 2016 24, 484-493DOI: (10.1016/j.joca.2015.09.009) Copyright © 2015 The Authors Terms and Conditions

Fig. 7 Boxplot shows data of the six and 12 month group of both control (gray) and implanted knees (black). Box denotes first and third quartiles and whiskers show the minimum and maximum value, respectively. The band inside the box denotes the median. Observe the large variation of cartilage damage and the modest difference between the two time points and between operated and control knees. Osteoarthritis and Cartilage 2016 24, 484-493DOI: (10.1016/j.joca.2015.09.009) Copyright © 2015 The Authors Terms and Conditions

Fig. 8 Age of the sheep (years) as the independent variable is shown on the x-axis and cartilage damage (according to the modified Mankin score) as the dependent variable is shown on the y-axis. Older sheep show a higher degree of cartilage damage (p < 0.001) in both operated (continued line) and control (dotted line) knees. Osteoarthritis and Cartilage 2016 24, 484-493DOI: (10.1016/j.joca.2015.09.009) Copyright © 2015 The Authors Terms and Conditions

Fig. 9 The bar graph shows the cartilage damage of the medial tibial plateau (light gray), lateral tibial plateau (gray) and lateral femoral condyle (black) of the operated and non-operated (control) knees (n = 13). Error bars denote SEM. There was a statistically significant difference between the medial plateaus of the operated and non-operated knee (p = 0.041), and also between the lateral and medial plateaus in both the implanted (p = 0.007) and control knee (p = 0.03). There was no statistical significant difference between lateral tibial plateaus (dotted line; p = 0.86). Osteoarthritis and Cartilage 2016 24, 484-493DOI: (10.1016/j.joca.2015.09.009) Copyright © 2015 The Authors Terms and Conditions

Fig. 10 Ground sections of a 12-month specimen demonstrating the osseochondrointegration (a) before staining and (b) after staining with toluidine blue. Osteoarthritis and Cartilage 2016 24, 484-493DOI: (10.1016/j.joca.2015.09.009) Copyright © 2015 The Authors Terms and Conditions