Transfer-based translation

Slides:



Advertisements
Similar presentations
Machine Translation II How MT works Modes of use.
Advertisements

Machine Translation MÖSG vt 2004 Anna Sågvall Hein.
 Christel Kemke 2007/08 COMP 4060 Natural Language Processing Feature Structures and Unification.
Anna Sågvall Hein, GSLT, January 2003 A grammar rule SVE.GRAM CL.IMP :=: 'CL, :=: 'IMP, = 'VERB, :=: 'VERB, = 'IMP, :=:, :=:, :=:, ADVANCE,
Lexical Functional Grammar : Grammar Formalisms Spring Term 2004.
Anna Sågvall Hein, GSLT, January 2003 Direct translation no intermediary sentence structure translation proceeds in a number of steps, each step dedicated.
PSY 369: Psycholinguistics Some basic linguistic theory part2.
Motivations for transfer-based translation lexical ambiguity structural differences See further Ingo 91.
LING NLP 1 Introduction to Computational Linguistics Martha Palmer April 19, 2006.
Natural Language Processing - Feature Structures - Feature Structures and Unification.
1 Words and the Lexicon September 10th 2009 Lecture #3.
Machine Translation (Level 2) Anna Sågvall Hein GSLT Course, September 2004.
1 Pertemuan 23 Syntatic Processing Matakuliah: T0264/Intelijensia Semu Tahun: 2005 Versi: 1/0.
NLP and Speech Course Review. Morphological Analyzer Lexicon Part-of-Speech (POS) Tagging Grammar Rules Parser thethe – determiner Det NP → Det.
Machine Translation Anna Sågvall Hein Mösg F
Introduction to Computational Linguistics Lecture 2.
Parsing: Features & ATN & Prolog By
 Christel Kemke 2007/08 COMP 4060 Natural Language Processing Feature Structures and Unification.
Automatic Rule Learning for Resource-Limited Machine Translation Alon Lavie, Katharina Probst, Erik Peterson, Jaime Carbonell, Lori Levin, Ralf Brown Language.
Machine Translation Prof. Alexandros Potamianos Dept. of Electrical & Computer Engineering Technical University of Crete, Greece May 2003.
Machine Translation (Level 2) Anna Sågvall Hein GSLT Course, September 2004.
Semi-Automatic Learning of Transfer Rules for Machine Translation of Low-Density Languages Katharina Probst April 5, 2002.
Creation of a Russian-English Translation Program Karen Shiells.
Machine Translation History of Machine Translation Difficulties in Machine Translation Structure of Machine Translation System Research methods for Machine.
Phonetics, Phonology, Morphology and Syntax
1 A Chart Parser for Analyzing Modern Standard Arabic Sentence Eman Othman Computer Science Dept., Institute of Statistical Studies and Research (ISSR),
Introduction to Natural Language Generation
ICS611 Introduction to Compilers Set 1. What is a Compiler? A compiler is software (a program) that translates a high-level programming language to machine.
LING 388: Language and Computers Sandiway Fong Lecture 17.
Lecture 12: 22/6/1435 Natural language processing Lecturer/ Kawther Abas 363CS – Artificial Intelligence.
Can Controlled Language Rules increase the value of MT? Fred Hollowood & Johann Rotourier Symantec Dublin.
THE BIG PICTURE Basic Assumptions Linguistics is the empirical science that studies language (or linguistic behavior) Linguistics proposes theories (models)
Chapter 15 Natural Language Processing (cont)
7. Parsing in functional unification grammar Han gi-deuc.
AMTEXT: Extraction-based MT for Arabic Faculty: Alon Lavie, Jaime Carbonell Students and Staff: Laura Kieras, Peter Jansen Informant: Loubna El Abadi.
Notes on Pinker ch.7 Grammar, parsing, meaning. What is a grammar? A grammar is a code or function that is a database specifying what kind of sounds correspond.
Head-driven Phrase Structure Grammar (HPSG)
What you have learned and how you can use it : Grammars and Lexicons Parts I-III.
CPE 480 Natural Language Processing Lecture 4: Syntax Adapted from Owen Rambow’s slides for CSc Fall 2006.
Machine Translation (Level 2) Anna Sågvall Hein GSLT Course, January 2003.
Daisy Arias Math 382/Lab November 16, 2010 Fall 2010.
1 Context Free Grammars October Syntactic Grammaticality Doesn’t depend on Having heard the sentence before The sentence being true –I saw a unicorn.
Jan 2004CSA3050: NLG21 CSA3050: Natural Language Generation 2 Surface Realisation Systemic Grammar Functional Unification Grammar see J&M Chapter 20.3.
◦ Process of describing the structure of phrases and sentences Chapter 8 - Phrases and sentences: grammar1.
NLP. Introduction to NLP (U)nderstanding and (G)eneration Language Computer (U) Language (G)
Approaching a New Language in Machine Translation Anna Sågvall Hein, Per Weijnitz.
October 10, 2003BLTS Kickoff Meeting1 Transfer with Strong Decoding Learning Module Transfer Rules {PP,4894} ;;Score: PP::PP [NP POSTP] -> [PREP.
King Faisal University جامعة الملك فيصل Deanship of E-Learning and Distance Education عمادة التعلم الإلكتروني والتعليم عن بعد [ ] 1 جامعة الملك فيصل عمادة.
Semi-Automatic Learning of Transfer Rules for Machine Translation of Minority Languages Katharina Probst Language Technologies Institute Carnegie Mellon.
Jan 2012MT Architectures1 Human Language Technology Machine Translation Architectures Direct MT Transfer MT Interlingual MT.
Eugene Nida
10/31/00 1 Introduction to Cognitive Science Linguistics Component Topic: Formal Grammars: Generating and Parsing Lecturer: Dr Bodomo.
English-Korean Machine Translation System
Approaches to Machine Translation
CS 326 Programming Languages, Concepts and Implementation
An Introduction to the Government and Binding Theory
Lecture – VIII Monojit Choudhury RS, CSE, IIT Kharagpur
Basic Parsing with Context Free Grammars Chapter 13
How Do We Translate? Methods of Translation The Process of Translation.
Modular HPSG Vlado Keselj presented by Lijun Hou
Translation Problems.
Initial Considerations
Tagging and Statistically Translating Latin Sentences
Token generation - stemming
Natural Language - General
Approaches to Machine Translation
Natural Language Processing
Syntax Analysis - 3 Chapter 4.
Artificial Intelligence 2004 Speech & Natural Language Processing
A Link Grammar for an Agglutinative Language
Presentation transcript:

Transfer-based translation intermediary sentencce structure basic processes analysis transfer generation (synthesis) language modules dictionary and grammar of SL transfer dictionary and transfer rules dictionary and grammar of TL Hutchins bild Anna Sågvall Hein, GSLT, January 2003

Anna Sågvall Hein, GSLT, January 2003 Direct translation SL TL Metal Transfer Multra Interlingua Anna Sågvall Hein, GSLT, January 2003

Anna Sågvall Hein, GSLT, January 2003 Metal See H&S Anna Sågvall Hein, GSLT, January 2003

Anna Sågvall Hein, GSLT, January 2003 MULTRA Multilingual Support for Translation and Writing translation engine transfer-based shake-and-bake modular unification-based preference machinery trace-able Anna Sågvall Hein, GSLT, January 2003

Anna Sågvall Hein, GSLT, January 2003

Anna Sågvall Hein, GSLT, January 2003 Analysis chart parser (Lisp  C) procedural formalism unification and other kinds of operations sentence structure feature structure grammatical relations surface order implicit via grammatical relations See further Sågvall Hein&Starbäck (99),Weijnitz (02), Dahllöf (89) Anna Sågvall Hein, GSLT, January 2003

Anna Sågvall Hein, GSLT, January 2003 Transfer unification-based declarative formalism Multra transfer formalism (Beskow 93) lexical and structural rules rules are partially ordered a more specific rule takes precedence over a less specific one specificity in terms of number of transfer equations all applicable rules are applied written in prolog Anna Sågvall Hein, GSLT, January 2003

Anna Sågvall Hein, GSLT, January 2003 Generation syntactic generation Multra syntactic generation formalism (Beskow 97a) PATR-like style unification concatenation typed features morphological generation (Beskow 97b) lexical insertion rules morphological realisation and phonological finish in prolog written in prolog Anna Sågvall Hein, GSLT, January 2003

An example: Tippa hytten. (* = (PHR.CAT = CL TYPE = IMP VERB = (WORD.CAT = VERB INFF = IMP DIAT = ACT LEX = TIPPA.VB.1) OBJ.DIR = (PHR.CAT = NP NUMB = SING GENDER = UTR CASE = BASIC DEF = DEF HEAD = (LEX = HYTT.NN.1 WORD.CAT = NOUN))) REG = (V1.LEM = TIPPA.VB) SEP = (WORD.CAT = SEP LEX = STOP.SR.0))) Anna Sågvall Hein, GSLT, January 2003

Anna Sågvall Hein, GSLT, January 2003 Chart structure (15 VERTICES)   > > (show) 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 12| 13| 14| 15| .-T-.-i-.-p-.-p-.-a-.-_-.-h-.-y-.-t-.-t-.-e-.-n---.-.-.-_-. .-t-. .-HYTT.NN-----------------.STOP.SR. .-TIPPA.VB--------------.-NP----------------------. .-TIPPA.VB--------------. .FORM.SUFF. .-CL------------------------------------------------------. Anna Sågvall Hein, GSLT, January 2003

Anna Sågvall Hein, GSLT, January 2003 Transfer structure Transfer structure [[VERB : [WORD.CAT : VERB LEX : TILT.VB.0 DIAT : ACT INFF : IMP] OBJ.DIR : [PHR.CAT : NP DEF : DEF NUMB : SING HEAD : [WORD.CAT : NOUN LEX : CAB.NN.0]] TYPE : IMP SEP : [WORD.CAT : SEP LEX : STOP.SR.0] PHR.CAT : CL] Anna Sågvall Hein, GSLT, January 2003

Anna Sågvall Hein, GSLT, January 2003 Generation Tilt the cab.   Anna Sågvall Hein, GSLT, January 2003