Greedy Technique Constructs a solution to an optimization problem piece by piece through a sequence of choices that are: feasible, i.e. satisfying the.

Slides:



Advertisements
Similar presentations
Introduction to Algorithms
Advertisements

CPSC 411 Design and Analysis of Algorithms Set 4: Greedy Algorithms Prof. Jennifer Welch Spring 2011 CPSC 411, Spring 2011: Set 4 1.
Greedy Technique The first key ingredient is the greedy-choice property: a globally optimal solution can be arrived at by making a locally optimal (greedy)
Chapter 9 Greedy Technique. Constructs a solution to an optimization problem piece by piece through a sequence of choices that are: b feasible - b feasible.
Lecture 15. Graph Algorithms
Chapter 23 Minimum Spanning Tree
Chapter 11 Limitations of Algorithm Power Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
Algorithm Design Techniques: Greedy Algorithms. Introduction Algorithm Design Techniques –Design of algorithms –Algorithms commonly used to solve problems.
Comp 122, Spring 2004 Greedy Algorithms. greedy - 2 Lin / Devi Comp 122, Fall 2003 Overview  Like dynamic programming, used to solve optimization problems.
CSCE 411H Design and Analysis of Algorithms Set 8: Greedy Algorithms Prof. Evdokia Nikolova* Spring 2013 CSCE 411H, Spring 2013: Set 8 1 * Slides adapted.
Greedy Algorithms Amihood Amir Bar-Ilan University.
Greedy Algorithms Greed is good. (Some of the time)
Prof. Sin-Min Lee Department of Computer Science
Greed is good. (Some of the time)
IKI 10100: Data Structures & Algorithms Ruli Manurung (acknowledgments to Denny & Ade Azurat) 1 Fasilkom UI Ruli Manurung (Fasilkom UI)IKI10100: Lecture10.
Chapter 3 The Greedy Method 3.
3 -1 Chapter 3 The Greedy Method 3 -2 The greedy method Suppose that a problem can be solved by a sequence of decisions. The greedy method has that each.
Design and Analysis of Algorithms - Chapter 91 Greedy algorithms Optimization problems solved through a sequence of choices that are: b feasible b locally.
CPSC 411, Fall 2008: Set 4 1 CPSC 411 Design and Analysis of Algorithms Set 4: Greedy Algorithms Prof. Jennifer Welch Fall 2008.
Chapter 9: Greedy Algorithms The Design and Analysis of Algorithms.
Minimum-Cost Spanning Tree weighted connected undirected graph spanning tree cost of spanning tree is sum of edge costs find spanning tree that has minimum.
Greedy Algorithms Reading Material: Chapter 8 (Except Section 8.5)
Chapter 9 Greedy Technique Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
Greedy Algorithms Like dynamic programming algorithms, greedy algorithms are usually designed to solve optimization problems Unlike dynamic programming.
CPSC 411, Fall 2008: Set 4 1 CPSC 411 Design and Analysis of Algorithms Set 4: Greedy Algorithms Prof. Jennifer Welch Fall 2008.
Lecture 23. Greedy Algorithms
The greedy method Suppose that a problem can be solved by a sequence of decisions. The greedy method has that each decision is locally optimal. These.
© The McGraw-Hill Companies, Inc., Chapter 3 The Greedy Method.
MST Many of the slides are from Prof. Plaisted’s resources at University of North Carolina at Chapel Hill.
SPANNING TREES Lecture 21 CS2110 – Spring
2IL05 Data Structures Fall 2007 Lecture 13: Minimum Spanning Trees.
UNC Chapel Hill Lin/Foskey/Manocha Minimum Spanning Trees Problem: Connect a set of nodes by a network of minimal total length Some applications: –Communication.
Dijkstra’s Algorithm. Announcements Assignment #2 Due Tonight Exams Graded Assignment #3 Posted.
Greedy Algorithms Dr. Yingwu Zhu. Greedy Technique Constructs a solution to an optimization problem piece by piece through a sequence of choices that.
1 Minimum Spanning Trees. Minimum- Spanning Trees 1. Concrete example: computer connection 2. Definition of a Minimum- Spanning Tree.
Lecture 19 Greedy Algorithms Minimum Spanning Tree Problem.
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 9 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.
Shortest Path in Weighted Graph : Dijkstra’s Algorithm.
Minimum Spanning Trees CS 146 Prof. Sin-Min Lee Regina Wang.
CSCE350 Algorithms and Data Structure Lecture 19 Jianjun Hu Department of Computer Science and Engineering University of South Carolina
1 Greedy Technique Constructs a solution to an optimization problem piece by piece through a sequence of choices that are: b feasible b locally optimal.
SPANNING TREES Lecture 20 CS2110 – Fall Spanning Trees  Definitions  Minimum spanning trees  3 greedy algorithms (incl. Kruskal’s & Prim’s)
Theory of Algorithms: Greedy Techniques James Gain and Edwin Blake {jgain | Department of Computer Science University of Cape Town.
SPANNING TREES Lecture 21 CS2110 – Fall Nate Foster is out of town. NO 3-4pm office hours today!
Design and Analysis of Algorithms - Chapter 91 Greedy algorithms Optimization problems solved through a sequence of choices that are: b feasible b locally.
Greedy Algorithms. Zhengjin,Central South University2 Review: Dynamic Programming Summary of the basic idea: Optimal substructure: optimal solution to.
November 22, Algorithms and Data Structures Lecture XII Simonas Šaltenis Nykredit Center for Database Research Aalborg University
CSCE 411 Design and Analysis of Algorithms
Greedy Technique Constructs a solution to an optimization problem piece by piece through a sequence of choices that are: feasible locally optimal irrevocable.
Chapter 5 : Trees.
Greedy Technique.
Chapter 5. Greedy Algorithms
The Greedy Method and Text Compression
Courtsey & Copyright: DESIGN AND ANALYSIS OF ALGORITHMS Courtsey & Copyright:
The Greedy Method and Text Compression
Minimum Spanning Trees
Lecture 12 Algorithm Analysis
Minimum-Cost Spanning Tree
CSCE350 Algorithms and Data Structure
Greedy Technique.
Minimum-Cost Spanning Tree
Minimum-Cost Spanning Tree
Lecture 12 Algorithm Analysis
Spanning Trees Lecture 20 CS2110 – Spring 2015.
Greedy Algorithms (I) Greed, for lack of a better word, is good! Greed is right! Greed works! - Michael Douglas, U.S. actor in the role of Gordon Gecko,
Analysis of Algorithms CS 477/677
Minimum-Cost Spanning Tree
Minimum Spanning Trees
More Graphs Lecture 19 CS2110 – Fall 2009.
Presentation transcript:

Chapter 9 Greedy Technique Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

Greedy Technique Constructs a solution to an optimization problem piece by piece through a sequence of choices that are: feasible, i.e. satisfying the constraints locally optimal (with respect to some neighborhood definition) greedy (in terms of some measure), and irrevocable For some problems, it yields a globally optimal solution for every instance. For most, does not but can be useful for fast approximations. We are mostly interested in the former case in this class. Defined by an objective function and a set of constraints

Applications of the Greedy Strategy Optimal solutions: change making for “normal” coin denominations minimum spanning tree (MST) single-source shortest paths simple scheduling problems Huffman codes Approximations/heuristics: traveling salesman problem (TSP) knapsack problem other combinatorial optimization problems

Change-Making Problem Given unlimited amounts of coins of denominations d1 > … > dm , give change for amount n with the least number of coins Example: d1 = 25c, d2 =10c, d3 = 5c, d4 = 1c and n = 48c Greedy solution: Greedy solution is optimal for any amount and “normal’’ set of denominations may not be optimal for arbitrary coin denominations Q: What are the objective function and constraints? <1, 2, 0, 3> Ex: Prove the greedy algorithm is optimal for the above denominations. For example, d1 = 25c, d2 = 10c, d3 = 1c, and n = 30c

Minimum Spanning Tree (MST) Spanning tree of a connected graph G: a connected acyclic subgraph of G that includes all of G’s vertices Minimum spanning tree of a weighted, connected graph G: a spanning tree of G of the minimum total weight Example: c d b a 6 2 4 3 1 c d b a 6 4 1 c d b a 2 3 1

Prim’s MST algorithm Start with tree T1 consisting of one (any) vertex and “grow” tree one vertex at a time to produce MST through a series of expanding subtrees T1, T2, …, Tn On each iteration, construct Ti+1 from Ti by adding vertex not in Ti that is closest to those already in Ti (this is a “greedy” step!) Stop when all vertices are included

Example c d b a c d b a c d b a c d b a c d b a 4 2 6 1 3 4 2 6 1 3 4

Notes about Prim’s algorithm Proof by induction that this construction actually yields an MST (CLRS, Ch. 23.1). Main property is given in the next page. Needs priority queue for locating closest fringe vertex. The Detailed algorithm can be found in Levitin, P. 310. Efficiency O(n2) for weight matrix representation of graph and array implementation of priority queue O(m log n) for adjacency lists representation of graph with n vertices and m edges and min-heap implementation of the priority queue

The Crucial Property behind Prim’s Algorithm Claim: Let G = (V,E) be a weighted graph and (X,Y) be a partition of V (called a cut). Suppose e = (x,y) is an edge of E across the cut, where x is in X and y is in Y, and e has the minimum weight among all such crossing edges (called a light edge). Then there is an MST containing e. Y y x X

Another greedy algorithm for MST: Kruskal’s Sort the edges in nondecreasing order of lengths “Grow” tree one edge at a time to produce MST through a series of expanding forests F1, F2, …, Fn-1 On each iteration, add the next edge on the sorted list unless this would create a cycle. (If it would, skip the edge.)

Example c c c a a a d d d b b b c c c a a a d d d b b b 4 4 4 1 1 1 6 2 6 1 3 c d b a 4 2 6 1 3 c d b a 4 2 6 1 3 c d b a 4 2 6 1 3 c d b a 2 6 1 3 c d b a 2 1 3

Notes about Kruskal’s algorithm Algorithm looks easier than Prim’s but is harder to implement (checking for cycles!) Cycle checking: a cycle is created iff added edge connects vertices in the same connected component Union-find algorithms – see section 9.2 Runs in O(m log m) time, with m = |E|. The time is mostly spent on sorting.

Minimum spanning tree vs. Steiner tree 1 a c a c s vs 1 1 b d b d 1 In general, a Steiner minimal tree (SMT) can be much shorter than a minimum spanning tree (MST), but SMTs are hard to compute.

Shortest paths – Dijkstra’s algorithm Single Source Shortest Paths Problem: Given a weighted connected (directed) graph G, find shortest paths from source vertex s to each of the other vertices Dijkstra’s algorithm: Similar to Prim’s MST algorithm, with a different way of computing numerical labels: Among vertices not already in the tree, it finds vertex u with the smallest sum dv + w(v,u) where v is a vertex for which shortest path has been already found on preceding iterations (such vertices form a tree rooted at s) dv is the length of the shortest path from source s to v w(v,u) is the length (weight) of edge from v to u

Example Tree vertices Remaining vertices b 4 e 3 7 6 2 5 c Example 4 d d Tree vertices Remaining vertices a(-,0) b(a,3) c(-,∞) d(a,7) e(-,∞) a b d 4 c e 3 7 6 2 5 4 b(a,3) c(b,3+4) d(b,3+2) e(-,∞) b c 3 6 2 5 a d e 7 4 d(b,5) c(b,7) e(d,5+4) 4 b c 3 6 2 5 a d 7 e 4 4 c(b,7) e(d,9) b c 3 6 2 5 a d e 7 4 e(d,9)

Notes on Dijkstra’s algorithm Correctness can be proven by induction on the number of vertices. Doesn’t work for graphs with negative weights (whereas Floyd’s algorithm does, as long as there is no negative cycle). Can you find a counterexample for Dijkstra’s algorithm? Applicable to both undirected and directed graphs Efficiency O(|V|2) for graphs represented by weight matrix and array implementation of priority queue O(|E|log|V|) for graphs represented by adj. lists and min-heap implementation of priority queue Don’t mix up Dijkstra’s algorithm with Prim’s algorithm! More details of the algorithm are in the text and ref books. We prove the invariants: (i) when a vertex is added to the tree, its correct distance is calculated and (ii) the distance is at least those of the previously added vertices.

Coding Problem Coding: assignment of bit strings to alphabet characters Codewords: bit strings assigned for characters of alphabet Two types of codes: fixed-length encoding (e.g., ASCII) variable-length encoding (e,g., Morse code) Prefix-free codes (or prefix-codes): no codeword is a prefix of another codeword Problem: If frequencies of the character occurrences are known, what is the best binary prefix-free code? E.g. We can code {a,b,c,d} as {00,01,10,11} or {0,10,110,111} or {0,01,10,101}. E.g. if P(a) = 0.4, P(b) = 0.3, P(c) = 0.2, P(d) = 0.1, then the average length of code #2 is 0.4 + 2*0.3 + 3*0.2 + 3*0.1 = 1.9 bits It allows for efficient (online) decoding! E.g. consider the encoded string (msg) 10010110… The one with the shortest average code length. The average code length represents on the average how many bits are required to transmit or store a character.

Huffman codes represents {00, 011, 1} Any binary tree with edges labeled with 0’s and 1’s yields a prefix-free code of characters assigned to its leaves Optimal binary tree minimizing the average length of a codeword can be constructed as follows: Huffman’s algorithm Initialize n one-node trees with alphabet characters and the tree weights with their frequencies. Repeat the following step n-1 times: join two binary trees with smallest weights into one (as left and right subtrees) and make its weight equal the sum of the weights of the two trees. Mark edges leading to left and right subtrees with 0’s and 1’s, respectively. 1 represents {00, 011, 1}

Example character A B C D _ frequency 0.35 0.1 0.2 0.2 0.15 codeword 11 100 00 01 101 average bits per character: 2.25 for fixed-length encoding: 3 compression ratio: (3-2.25)/3*100% = 25%