AEROCOM direct aerosol experiment A2 Status per

Slides:



Advertisements
Similar presentations
AeroCom Phase 2 Direct Radiative Interaction Status as of Most numbers are final, a few submissions may change slightly. Effect on final numbers.
Advertisements

AEROCOM direct aerosol experiment A2 Status per Some model groups are still in the process of submitting results. Not all submitted results.
Alan Robock Department of Environmental Sciences Rutgers University, New Brunswick, New Jersey USA
AEROCOM direct aerosol experiment A2 Status per Caveat: All submitted results have been run through the same analysis chain. Irregularities.
Direct radiative forcing and BC on snow in the Arctic region Bjørn H. Samset, Gunnar Myhre, Ragnhild B. Skeie, … Outline: - BC on snow in the Arctic region.
"Future climate impacts of direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases" Chen, W; Liao, H; Seinfeld,
GEOS-Chem simulation for AEROCOM Organic Aerosol Inter-comparison SIMULATED YEAR: 2006 Gabriele Curci – CETEMPS Nov
A 1 A 2 A 3 A 4 B B B
Eric M. Leibensperger, Loretta J. Mickley, Daniel J. Jacob School of Engineering and Applied Sciences, Harvard University Climate response to changing.
Rewrite With Fractional Exponents. Rewrite with fractional exponent:
COMP6215 E-Business Management 1 E-Business Management COMP6215 Introduction.
Direct Radiative Effect of aerosols over clouds and clear skies determined using CALIPSO and the A-Train Robert Wood with Duli Chand, Tad Anderson, Bob.
Ratio- compares one number to another.
Direct radiative forcing of aerosols and tropospheric ozone from specific emissions sectors and locations CMAS 10/11/2010 Daven K Henze University of Colorado.
Mixing State of Aerosols: Excess Atmospheric Absorption Paradox Shekhar Chandra Graduate Student, EAS Term Paper Presentation for EAS-6410.
Land Use Change Impacts on Air Quality and Climate* AGU Fall Meeting December 19, 2014 Colette L. Heald Dominick V. Spracklen *review article submitted.
Use of CCSM3 and CAM3 Historical Runs: Estimation of Natural and Anthropogenic Climate Variability and Sensitivity Bruce T. Anderson, Boston University.
Lesson 4.4 Simplifying Fractions
Morrison/Gettelman/GhanAMWG January 2007 Two-moment Stratiform Cloud Microphysics & Cloud-aerosol Interactions in CAM H. Morrison, A. Gettelman (NCAR),
Clouds & Radiation: Climate data vs. model results A tribute to ISCCP Ehrhard Raschke, University of Hamburg Stefan Kinne, MPI-Meteorology Hamburg 25 years.
Recent activities on aerosols in TM5 Achim Strunk Twan van Noije, Michiel van Weele AeroCom-2 contribution by KNMI Preliminary source sink analysis Online.
What can we see in the sky?. IN THE SKY WE CAN SEE MUCH MORE!
Aerosol Radiative Forcing from combined MODIS and CERES measurements
Aerosol Indirect Effects in CAM and MIRAGE Steve Ghan Pacific Northwest National Laboratory Jean-Francois Lamarque, Peter Hess, and Francis Vitt, NCAR.
How do regional aerosol emissions affect climate? Matthew Kasoar With: Apostolos Voulgarakis (Imperial), Drew Shindell (NASA GISS/Duke), Greg Faluvegi.
Climate Sensitivity, Forcings, And Feedbacks. Forcings and Feedbacks in the Climate System Schematic view of the components of the climate system, their.
NASA Langley Research Center / Atmospheric Sciences CERES Instantaneous Clear-sky and Monthly Averaged Radiance and Flux Product Overview David Young NASA.
Sensitivity of black carbon radiative forcing to vertical density profiles in AeroCom phase 2 B. Samset, G. Myhre, AeroCom modellers (full list to be filled.
Korea Institute of Atmospheric Prediction Systems (KIAPS) ( 재 ) 한국형수치예보모델개발사업단 Comparison of Radiation Schemes Using a Single Colum Model Joonsuk Lee Jung-Yoon.
Login Screen Step 1: Please Enter 21 digit Head of office Login Id and Password Step 2: Click Submit Button.
Copernicus Atmosphere Monitoring Service CAMS General Assembly, Athens, June 2016 Thomas Popp (DLR for CAMS-94 User Interaction) Who are CAMS users.
Quantifying rapid adjustments using radiative kernels
Find the common denominator. Make equivalent fractions.
AM and ChemClim WG - February, 2008
1 5 = 2 a Cross multiplying is a strategy for finding
Ch.4 HW 1. Take out HW 2. Take out a pen (NOT THE SAME COLOR AS YOUR HW if you completed it in pen). 3. Correct your answers.
PDRMIP Phase 2: New experiments, first glance
Chapter 5 Ratios, Proportions, and Percents
Solving Systems in 3 Variables using Matrices
Brief update on the halocarbon experiment
مفهوم السياحة المحلية في الأردن
802.11e Portland Report July 16, 2004 July 16, 2004
Warm Up #6 1. Let a = 4, b = – 5, c = – 2, and d = 7. Find ad – bc.
An Example of {AND, OR, Given that} Using a Normal Distribution
Modelling the radiative impact of aerosols from biomass burning during SAFARI-2000   Gunnar Myhre, Terje K. Berntsen, James M. Haywood, Jostein K. Sundet,
NITS Load Designation NITS Training Guide 2017.
Finding the slope of a line using a graph
Finding the Slope of a Line Unit 7.02
Latest Development on Modal Aerosol Formulation and Indirect Effects
Robert Wood, Duli Chand, Tad Anderson University of Washington
+ = Climate Responses to Biomass Burning Aerosols over South Africa
10:00.
Robert Wood, Duli Chand, Tad Anderson University of Washington
Contribution of Black Carbon Aerosol to Drying of the Mediterranean
Robert Wood, Duli Chand, Tad Anderson University of Washington
Algebraic Solving Method
مديريت موثر جلسات Running a Meeting that Works
Task: Transform a Pre-work Request into an Additional Pay Request
Quick Review.
Unit 3 Review (Calculator)
Water vapour changes in PDRMIP simulations
Welcome Ticket: Worksheet
Multiply by a ONE IN DISGUISE!
Multiply by a ONE IN DISGUISE!
Calculate 9 x 81 = x 3 3 x 3 x 3 x 3 3 x 3 x 3 x 3 x 3 x 3 x =
Stopping Criteria Is the residual check appropriate as the stopping condition? It is known that relative corrections of field variables and design variables.
Presented as Discussion Material for the Radiative Coupling Project
POLDER vs HadGEM3: Capturing the variability of aerosol direct radiative effect Ben Johnson, Nick Davies1, Fanny Peers1, Jim Haywood1 1 University of.
Fractions – Simplifying – Foundation – GCSE Questions
Completing the Transcript Information
Presentation transcript:

AEROCOM direct aerosol experiment A2 Status per 17.06.2011 Caveat: All submitted results have been run through the same analysis chain. Irregularities may arise both from the results themselves and from the analysis. If you see unexpected results from your own model please let us know and we will look into it. Unless otherwise stated, all values are for the anthropogenic aerosol fraction.

RF [W/m2] All sky: Clear sky: Comp CAM4-Oslo HadGEM2-ES MPIHAM_V2_KZ OsloCTM2 SPRINTARS-v384 GISS-MATRIX GISS-modelE CAM5 All -0,05 -0,31 -0,15 -0,43 -0,28 -0,49 -0,66 -2,08 SO4 -0,48 -0,58 -0,37 -0,25 0,26 -0,18 BCFF 0,37 0,19 0,14 0,38 0,17 0,22 0,25 OAFF -0,03 -0,04 -0,01 -0,08 -0,02 BB 0,07 -0,07 0,02 -0,16 SOA NO3 -0,11 -0,13 -0,26 CSum -0,33 -0,41 -0,27 -0,24 0,03 Clear sky: Comp CAM4-Oslo HadGEM2-ES MPIHAM_V2_KZ OsloCTM2 SPRINTARS-v384 GISS-MATRIX GISS-modelE CAM5 All -0,72 -0,44 -1,18 -0,29 -0,87 -0,39 SO4 -0,88 -0,50 -1,01 BCFF 0,21 0,11 0,26 OAFF -0,06 -0,12 BB -0,36 -0,14 -0,10 SOA NO3 -0,17 -0,05 Csum -1,14

RF [W/m2]

RF [W/m2] for BCFF Zonal means All sky Clear sky

Burden [mg/m2] NRF [W/g] Comp CAM4-Oslo HadGEM2-ES MPIHAM_V2_KZ OsloCTM2 SPRINTARS-v384 GISS-MATRIX GISS-modelE CAM5 SO4 2,78 1,59 2,30 2,61 2,13 1,48 1,10 1,71 BCFF 0,21 0,31 0,11 0,17 0,16 0,07 0,09 OAFF 0,28 0,24 0,18 0,81 0,25 0,22 0,44 BB 2,96 0,48 SOA 0,36 NO3 0,33 NRF [W/g] Comp CAM4-Oslo HadGEM2-ES MPIHAM_V2_KZ OsloCTM2 SPRINTARS-v384 GISS-MATRIX GISS-modelE CAM5 SO4 -173 -193 -122 -223 -172 -171 240 -107 BCFF 1763 612 1258 2271 865 2374 1328 2677 OAFF -118 -145 -81 -105 -98 -140 -146 -76 BB 24 -143 SOA -183 -56 NO3 -249 -191 -392 -781

NRF [W/g]

Burden [mg/m2], zonal means SO4 BCFF OAFF or BC NO3 BB SOA

AOT at 550 NRF [W/m2] Comp CAM4-Oslo HadGEM2-ES MPIHAM_V2_KZ OsloCTM2 SPRINTARS-v384 GISS-MATRIX GISS-modelE CAM5 SO4 0,0199 0,0142 0,0066 0,0293 0,0220 0,0165 0,0045 0,0096 BCFF 0,0016 0,0003 0,0022 0,0005 0,0009 0,0002 OAFF 0,0017 0,0055 0,0024 0,0025 0,0029 BB 0,0157 0,0038 0,0044 0,0008 0,0084 SOA 0,0007 0,0023 NO3 0,0051 0,0019 0,0083 0,0434 NRF [W/m2] Comp CAM4-Oslo HadGEM2-ES MPIHAM_V2_KZ OsloCTM2 SPRINTARS-v384 GISS-MATRIX GISS-modelE CAM5 SO4 -24 -22 -43 -20 -17 -15 58 -19 BCFF 241 114 431 172 256 188 99 1482 OAFF -21 -10 -30 -13 -11 BB 5 -18 -4 -8 SOA -28 -26 -7 NO3 -16 -6

NRF [W/m2]

Ext.coeff [m^2/g] Comp CAM4-Oslo HadGEM2-ES MPIHAM_V2_KZ OsloCTM2 SPRINTARS-v384 GISS-MATRIX GISS-modelE CAM5 SO4 7,2 8,9 2,9 11,2 10,3 4,1 5,6 BCFF 7,3 5,4 13,2 3,4 12,7 13,4 1,8 OAFF 6,0 7,0 6,8 9,8 4,7 11,7 6,6 BB 5,3 8,0 SOA 6,9 8,1 NO3 11,8 11,3 25,1 133,2

RF TOA all sky [W/m2 ]

RF TOA all sky [W/m2 ]

AEROCOM A2 – TOA/surface rad flux variables, per 2011-06-17 Model rsut rsutcs rsdt rsds rsus rsdscs rsuscs* CAM4-Oslo Yes No GISS-MATRIX Equiv GISS-modelE HadGEM-ES MPIHAM_V2_KZ OsloCTM2 SPRINTARS-v384 CAM5-MAM3-PNNL * Not requested, can be calculated from the others Delivered Not delivered Equivalent variable delivered that can be used Pre Delivered for PRE only Ctrl Delivered for CTRL only

AEROCOM A2 – 3D fields, per 2011-06-17 Model temp hus mmr<comp> pres CAM4-Oslo Yes GISS-MATRIX No GISS-modelE HadGEM-ES Ctrl-indir MPIHAM_V2_KZ OsloCTM2 Ctrl SPRINTARS-v384 CAM5-MAM3-PNNL * Not requested, can be calculated from the others Delivered for CTRL and PRE Not delivered Equiv Equivalent variable delivered that can be used Pre Delivered for PRE only Delivered for CTRL only