Instructors: Majd Sakr and Khaled Harras

Slides:



Advertisements
Similar presentations
Dynamic Memory Allocation I Topics Basic representation and alignment (mainly for static memory allocation, main concepts carry over to dynamic memory.
Advertisements

Machine-Level Programming IV: Structured Data Feb 5, 2004 Topics Arrays Structs Unions class08.ppt “The course that gives CMU its Zip!”
University of Washington Data Structures! Arrays  One-dimensional  Multi-dimensional (nested)  Multi-level Structs  Alignment Unions 1.
Structured Data: Sept. 20, 2001 Topics Arrays Structs Unions class08.ppt “The course that gives CMU its Zip!”
Machine-Level Programming IV: Data Sept. 19, 2007 Structured Data Arrays Structs UnionsData/Control Buffer overflow class07.ppt F’07.
Machine-Level Programming IV: Structured Data Apr. 23, 2008 Topics Arrays Structures Unions EECS213.
Machine-Level Programming IV: Structured Data Topics Arrays Structures Unions CS213.
Structured Data I: Homogenous Data Sept. 17, 1998 Topics Arrays –Single –Nested Pointers –Multilevel Arrays Optimized Array Code class08.ppt “The.
Structured Data II Heterogenous Data Sept. 22, 1998 Topics Structure Allocation Alignment Operating on Byte Strings Unions Byte Ordering Alpha Memory Organization.
Data Representation and Alignment Topics Simple static allocation and alignment of basic types and data structures Policies Mechanisms.
– 1 – Referencing Examples Code Does Not Do Any Bounds Checking! ReferenceAddressValueGuaranteed? mit[3]36 + 4* 3 = 483 Yes mit[5]36 + 4* 5 = 566 No mit[-1]36.
Machine-Level Programming 6 Structured Data Topics Structs Unions.
Ithaca College 1 Machine-Level Programming VIII: Advanced Topics: alignment & Unions Comp 21000: Introduction to Computer Systems & Assembly Lang Systems.
Machine-Level Programming IV: Structured Data Topics Arrays Structs Unions CS 105 “Tour of the Black Holes of Computing”
Instructors: Gregory Kesden and Markus Püschel
University of Amsterdam Computer Systems – Data in C Arnoud Visser 1 Computer Systems New to C?
Machine-level Programming IV: Data Structures Topics –Arrays –Structs –Unions.
University of Washington Today Lab 3 out  Buffer overflow! Finish-up data structures 1.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Machine-Level Programming IV: Data Topics: Arrays.
Fabián E. Bustamante, Spring 2007 Machine-Level Prog. IV - Structured Data Today Arrays Structures Unions Next time Arrays.
Machine-Level Programming IV: Structured Data
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Machine-Level Programming IV: Data MCS284: Computer.
Assembly - Arrays תרגול 7 מערכים.
Machine-Level Programming IV: Structured Data Topics Arrays Structs Unions CS 105 “Tour of the Black Holes of Computing”
Carnegie Mellon /18-243: Introduction to Computer Systems Instructors: Bill Nace and Gregory Kesden (c) All Rights Reserved. All work.
Recitation 3 Outline Recursive procedure Complex data structures –Arrays –Structs –Unions Function pointer Reminders Lab 2: Wed. 11:59PM Lab 3: start early.
1 Array. 2 Outline Aggregate scalar data into larger data Pointers vs. Array Array subscript and pointer arithmetic Memory layout for array –Static vs.
Lecture 9 Aggregate Data Topics Arrays Structs Unions again Lab 02 comments Vim, gedit, February 22, 2016 CSCE 212 Computer Architecture.
Machine-Level Programming IV: Data
Machine-Level Programming IV: Data
C Tutorial (part 5) CS220, Spring 2012
Machine-Level Programming IV: Structured Data
Machine-Level Programming IV: Data
Machine-Level Programming IV: Structured Data Sept. 30, 2008
Heterogeneous Data Structures & Alignment
Referencing Examples Code Does Not Do Any Bounds Checking!
Machine-Level Programming IV: x86-64 Procedures, Data
Machine-Level Programming 5 Structured Data
Machine-Level Programming IV: Data CSCE 312
Machine-level Programming IV: Data Structures
IA32 Stack Discipline From Last Time
Feb 2 Announcements Arrays/Structs in C Lab 2? HW2 released
IA32 Stack Discipline From Last Time
Machine-Level Programming IV: Data September 8, 2008
Machine-Level Programming 6 Structured Data
Machine-Level Programming IV: Structured Data Sept. 19, 2002
Machine-Level Programming IV: Data
Roadmap C: Java: Assembly language: OS: Machine code: Computer system:
Instructor: Phil Gibbons
Roadmap C: Java: Assembly language: OS: Machine code: Computer system:
Instructors: Majd Sakr and Khaled Harras
Machine-Level Programming IV: Structured Data
Structured Data II Heterogenous Data Feb. 15, 2000
Machine-Level Programming IV: Data
Machine-Level Programming IV: Data /18-213/14-513/15-513: Introduction to Computer Systems 8th Lecture, September 20, 2018.
Machine Level Representation of Programs (III)
Machine-Level Programming IV: Machine Data 9th Lecture
Machine-Level Programming VIII: Data Comp 21000: Introduction to Computer Systems & Assembly Lang Spring 2017 Systems book chapter 3* * Modified slides.
Machine-Level Programming 5 Structured Data
Machine-Level Programming 5 Structured Data
Machine-Level Programming IV: Structured Data
Structured Data I: Homogenous Data Feb. 10, 2000
Instructor: Fatma CORUT ERGİN
Machine-Level Programming VIII: Data Comp 21000: Introduction to Computer Systems & Assembly Lang Spring 2017 Systems book chapter 3* * Modified slides.
Data Spring, 2019 Euiseong Seo
Machine-Level Programming VIII: Data Comp 21000: Introduction to Computer Systems & Assembly Lang Spring 2017 Systems book chapter 3* * Modified slides.
Machine-Level Programming IV: Structured Data
Machine-Level Programming IV: Data
Machine-Level Programming IV: Structured Data
Machine-Level Programming IV: Structured Data
Presentation transcript:

Instructors: Majd Sakr and Khaled Harras Introduction to Computer Systems 15-213, fall 2009 8th Lecture, Sep. 16th Instructors: Majd Sakr and Khaled Harras

Last Time Arrays Nested Multi-level int val[5]; 1 5 2 3 x x + 4 x + 8 int pgh[4][5]; int *univ[3]

Dynamic Nested Arrays Strength Programming Performance Can create matrix of any size Programming Must do index computation explicitly Performance Accessing single element costly Must do multiplication int * new_var_matrix(int n) { return (int *) calloc(sizeof(int), n*n); } int var_ele (int *a, int i, int j, int n) { return a[i*n+j]; } movl 12(%ebp),%eax # i movl 8(%ebp),%edx # a imull 20(%ebp),%eax # n*i addl 16(%ebp),%eax # n*i+j movl (%edx,%eax,4),%eax # Mem[a+4*(i*n+j)]

Dynamic Array Multiplication Per iteration: Multiplies: 3 2 for subscripts 1 for data Adds: 4 2 for array indexing 1 for loop index /* Compute element i,k of variable matrix product */ int var_prod_ele (int *a, int *b, int i, int k, int n) { int j; int result = 0; for (j = 0; j < n; j++) result += a[i*n+j] * b[j*n+k]; return result; } a b j-th column x i-th row

Optimizing Dynamic Array Multiplication { int j; int result = 0; for (j = 0; j < n; j++) result += a[i*n+j] * b[j*n+k]; return result; } 4 adds, 3 mults Optimizations Performed when set optimization level to -O2 Code Motion Expression i*n can be computed outside loop Strength Reduction Incrementing j has effect of incrementing j*n+k by n Operations count 4 adds, 1 mult { int j; int result = 0; int iTn = i*n; int jTnPk = k; for (j = 0; j < n; j++) { result += a[iTn+j] * b[jTnPk]; jTnPk += n; } return result; 4 adds, 1 mult

Today Structures Alignment Unions

Structures Memory Layout Concept Accessing Structure Member struct rec { int i; int a[3]; int *p; }; Memory Layout i a p 4 16 20 Concept Contiguously-allocated region of memory Refer to members within structure by names Members may be of different types Accessing Structure Member void set_i(struct rec *r, int val) { r->i = val; } IA32 Assembly # %eax = val # %edx = r movl %eax,(%edx) # Mem[r] = val

Generating Pointer to Structure Member struct rec { int i; int a[3]; int *p; }; r r+4+4*idx i a p 4 16 20 int *find_a (struct rec *r, int idx) { return &r->a[idx]; } What does it do? # %ecx = idx # %edx = r leal 0(,%ecx,4),%eax # 4*idx leal 4(%eax,%edx),%eax # r+4*idx+4 Will disappear blackboard?

Generating Pointer to Structure Member struct rec { int i; int a[3]; int *p; }; r r+4+4*idx i a p 4 16 20 Generating Pointer to Array Element Offset of each structure member determined at compile time int *find_a (struct rec *r, int idx) { return &r->a[idx]; } # %ecx = idx # %edx = r leal 0(,%ecx,4),%eax # 4*idx leal 4(%eax,%edx),%eax # r+4*idx+4

Structure Referencing (Cont.) C Code struct rec { int i; int a[3]; int *p; }; i a p 4 16 20 i a void set_p(struct rec *r) { r->p = &r->a[r->i]; } 4 16 20 Element i What does it do? # %edx = r movl (%edx),%ecx # r->i leal 0(,%ecx,4),%eax # 4*(r->i) leal 4(%edx,%eax),%eax # r+4+4*(r->i) movl %eax,16(%edx) # Update r->p

Today Structures Alignment Unions

Alignment Aligned Data Motivation for Aligning Data Compiler Primitive data type requires K bytes Address must be multiple of K Required on some machines; advised on IA32 treated differently by IA32 Linux, x86-64 Linux, and Windows! Motivation for Aligning Data Memory accessed by (aligned) chunks of 4 or 8 bytes (system dependent) Inefficient to load or store datum that spans quad word boundaries Virtual memory very tricky when datum spans 2 pages Compiler Inserts gaps in structure to ensure correct alignment of fields

Specific Cases of Alignment (IA32) 1 byte: char, … no restrictions on address 2 bytes: short, … lowest 1 bit of address must be 02 4 bytes: int, float, char *, … lowest 2 bits of address must be 002 8 bytes: double, … Windows (and most other OS’s & instruction sets): lowest 3 bits of address must be 0002 Linux: i.e., treated the same as a 4-byte primitive data type 12 bytes: long double Windows, Linux:

Specific Cases of Alignment (x86-64) 1 byte: char, … no restrictions on address 2 bytes: short, … lowest 1 bit of address must be 02 4 bytes: int, float, … lowest 2 bits of address must be 002 8 bytes: double, char *, … Windows & Linux: lowest 3 bits of address must be 0002 16 bytes: long double Linux: i.e., treated the same as a 8-byte primitive data type

Satisfying Alignment with Structures Within structure: Must satisfy element’s alignment requirement Overall structure placement Each structure has alignment requirement K K = Largest alignment of any element Initial address & structure length must be multiples of K Example (under Windows or x86-64): K = 8, due to double element struct S1 { char c; int i[2]; double v; } *p; c 3 bytes i[0] i[1] 4 bytes v p+0 p+4 p+8 p+16 p+24 Multiple of 4 Multiple of 8 Multiple of 8 Multiple of 8

Different Alignment Conventions struct S1 { char c; int i[2]; double v; } *p; x86-64 or IA32 Windows: K = 8, due to double element IA32 Linux K = 4; double treated like a 4-byte data type c 3 bytes i[0] i[1] 4 bytes v p+0 p+4 p+8 p+16 p+24 c 3 bytes i[0] i[1] v p+0 p+4 p+8 p+12 p+20

Saving Space Put large data types first Effect (example x86-64, both have K=8) struct S1 { char c; int i[2]; double v; } *p; struct S2 { double v; int i[2]; char c; } *p; c i[0] i[1] v 3 bytes 4 bytes p+0 p+4 p+8 p+16 p+24 c i[0] i[1] v p+0 p+8 p+16

Arrays of Structures Satisfy alignment requirement for every element struct S2 { double v; int i[2]; char c; } a[10]; • • • a[0] a[1] a[2] a+0 a+24 a+48 a+36 v i[0] i[1] c 7 bytes a+24 a+32 a+40 a+48

Accessing Array Elements struct S3 { short i; float v; short j; } a[10]; Compute array offset 12i Compute offset 8 with structure Assembler gives offset a+8 Resolved during linking a[0] • • • a[i] • • • a+0 a+12i i 2 bytes v j 2 bytes a+12i a+12i+8 short get_j(int idx) { return a[idx].j; } # %eax = idx leal (%eax,%eax,2),%eax # 3*idx movswl a+8(,%eax,4),%eax

Today Structures Alignment Unions

Union Allocation Allocate according to largest element Can only use ones field at a time union U1 { char c; int i[2]; double v; } *up; c i[0] i[1] v up+0 up+4 up+8 struct S1 { char c; int i[2]; double v; } *sp; c 3 bits i[0] i[1] 4 bits v sp+0 sp+4 sp+8 sp+16 sp+24

Using Union to Access Bit Patterns typedef union { float f; unsigned u; } bit_float_t; u f 4 float bit2float(unsigned u) { bit_float_t arg; arg.u = u; return arg.f; } unsigned float2bit(float f) { bit_float_t arg; arg.f = f; return arg.u; } Same as (float) u ? Same as (unsigned) f ?

So Far: Structures Alignment Unions c i[0] i[1] v Memory Layout i a p struct rec { int i; int a[3]; int *p; }; Memory Layout Structures Alignment Unions i a p 4 16 20 struct S1 { char c; int i[2]; double v; } *p; c 3 bits i[0] i[1] 4 bits v p+0 p+4 p+8 p+16 p+24 union U1 { char c; int i[2]; double v; } *up; c i[0] i[1] v up+0 up+4 up+8 29

Summary Arrays in C Structures Unions Contiguous allocation of memory Aligned to satisfy every element’s alignment requirement Pointer to first element No bounds checking Structures Allocate bytes in order declared Pad in middle and at end to satisfy alignment Unions Overlay declarations Way to circumvent type system