Reflection Refractive index Snell's law Optical power Lens equation

Slides:



Advertisements
Similar presentations
Created by Stephanie Ingle Kingwood High School
Advertisements

1 UCT PHY1025F: Geometric Optics Physics 1025F Geometric Optics Dr. Steve Peterson OPTICS.
Reflection and Refraction of Light
The Refraction of Light The speed of light is different in different materials. We define the index of refraction, n, of a material to be the ratio of.
Reflection and Refraction. Reflection  Reflection occurs when light bounces off a surface.  There are two types of reflection – Specular reflection.
Light: Geometric Optics
Geometric Optics The Law of Reflection.
WAVES Optics.
© 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Copyright © 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction.
Reflection of Light Reflection and Refraction of Light Refraction of Light.
Geometric Optics Ray Model assume light travels in straight line
Refraction of Light Light changes direction (bends) as it crosses a boundary between 2 media in which the light moves at different speeds. Amount of refraction.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Reflection and Refraction Chapter 29. Reflection When a wave reaches a boundary between two media, some or all of the wave bounces back into the first.
S-95 Explain how a curved mirror, and a curved lens are different. Think in terms of image formation and in terms of what light photons do.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Geometric Optics September 14, Areas of Optics Geometric Optics Light as a ray. Physical Optics Light as a wave. Quantum Optics Light as a particle.
Refraction is the change of direction of a light wave caused by a change in speed as the wave crosses a boundary between materials.
Optical Refraction Optical Density is a property of a transparent material that is inverse to the speed of light through the material. Air Water incident.
Light refraction.
Optics Review #1 LCHS Dr.E. When a light wave enters a new medium and is refracted, there must be a change in the light wave’s (A) color (B) frequency.
(Objective(s): Warm up (write question and answer in your notebook) How does the size of the slits in a diffraction grating affect the pattern seen? Draw.
In describing the propagation of light as a wave we need to understand: wavefronts: a surface passing through points of a wave that have the same phase.
Optical Density - a property of a transparent medium that is an inverse measure of the speed of light through the medium. (how much a medium slows the.
Physics: Principles with Applications, 6th edition
Law of Refraction Ramos, Solomon Bell, Emmanuel. Snell’s Law Snell's law states that the ratio of the sines of the angles of incidence and refraction.
Reflection and Refraction. Reflection Reflection – some or all of a wave bounces back into the first medium when hitting a boundary of a second medium.
Refraction and Lenses. Refraction is the bending of light as it moves from one medium to a medium with a different optical density. This bending occurs.
PHY 102: Lecture Index of Refraction 10.2 Total Internal Reflection 10.3 Prism and Rainbows 10.4 Lenses 10.5 Formation of Images 10.6 Lens Equations.
Geometrical Optics.
Refraction & Lenses. Refraction of Light When a ray of light traveling through a transparent medium encounters a boundary leading into another transparent.
Chapter 32Light: Reflection and Refraction Formation of Images by Spherical Mirrors Example 32-7: Convex rearview mirror. An external rearview car.
Lecture 2: Reflection of Light: Mirrors (Ch 25) & Refraction of Light: Lenses (Ch 26)
Physics REVISION – Light - Reflection The law of reflection Sound waves and light waves reflect from surfaces. The angle of incidence equals the angle.
Optics Reflection and Refraction Lenses. REFLECTIONREFRACTION DIFFRACTIONINTERFERENCE Fundamentals of Optics Continuum of wavesFinite no. of waves IMAGING.
Geometrical Optics.
Reflection of Light Reflection – The bouncing back of a particle or wave that strikes the boundary between two media. Law of Reflection – The angle of.
Geometric Optics AP Physics Chapter 23.
Chapter 18: Refraction and Lenses
Refraction and Lenses.
Refraction and Lenses.
Index of Refraction.
Chapter 23: Reflection and Refraction of Light
Reflection & Mirrors There are two kinds of mirrors Plane mirrors
Chapter 32Light: Reflection and Refraction
Friday, March 25th, 2011 The Law of Reflection.
A. WAVE OPTICS B. GEOMETRIC OPTICS Light Rays
Refraction Chapter 14: Section 1.
Refraction and Lenses AP Physics B.
CHAPTER - 10 LIGHT : REFLECTION AND REFRACTION
Reflection and Refraction of Waves
Mirrors continued.
Reflection and Refraction
the change of direction of a ray of light
Light Big Idea: Electromagnetic Radiation, which includes light, is a form of radiant energy possessing properties of both waves and zero-mass particles.
Geometric Optics Ray Model assume light travels in straight line
Speed of light The speed of light is 3.0 x 108 m/s in a vacuum
17.1 Reflection and Refraction
Describe what a lens and a mirror do to light rays.
Wavefronts and Snell’s Law of Refraction
Chapter 33 Lenses and Optical Instruments
Refraction and Lenses Physics.
the change of direction of a ray of light
Reflection from mirrors
Refraction and Lenses Honors Physics.
Light and Lenses While Mirrors involve the reflection of light and the images we see, Lenses involve another property of light, refraction, or the effects.
Refraction and Lenses AP Physics B.
Chapter 32 Light: Reflection and Refraction
Presentation transcript:

Reflection Refractive index Snell's law Optical power Lens equation Geometric optics Reflection Refractive index Snell's law Optical power Lens equation

Reflection Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves. The law of reflection says that for specular reflection the angle at which the wave is incident on the surface equals the angle at which it is reflected. Mirrors exhibit specular reflection.

Reflection

Mirror In order to understand mirrors, we first must understand light. The law of reflection says that when a ray of light hits a surface, it bounces in a certain way, like a tennis ball thrown against a wall. The incoming angle, called the angle of incidence, is always equal to the angle leaving the surface, or the angle of reflection. When light hits a surface at a low angle -- like on a lake at sunset -- it bounces off at the same low angle and hits your eyes full blast, rather than obliquely as when the sun sits overhead. This is why the sun's glare during the evening and morning is so much more intense than during the rest of the day.

Total internal reflection Total internal reflection is a phenomenon that happens when a propagating wave strikes a medium boundary at an angle larger than a particular critical angle with respect to the normal to the surface. If the refractive index is lower on the other side of the boundary and the incident angle is greater than the critical angle, the wave cannot pass through and is entirely reflected. The critical angle is the angle of incidence above which the total internal reflection occurs. This is particularly common as an optical phenomenon, where light waves are involved, but it occurs with many types of waves, such as electromagnetic waves in general or sound waves.

Total internal reflection (continued) When a wave crosses a boundary between different materials with different kinds of refractive indices, the wave will be partially refracted at the boundary surface, and partially reflected. However, if the angle of incidence is greater (i.e. the direction of propagation or ray is closer to being parallel to the boundary) than the critical angle – the angle of incidence at which light is refracted such that it travels along the boundary – then the wave will not cross the boundary and instead be totally reflected back internally. This can only occur when the wave in a medium with a higher refractive index (n1) hits its surface that's in contact with a medium of lower refractive index (n2). For example, it will occur with light hitting air from glass, but not when hitting glass from air.

(continued) Total internal reflection

Total internal reflection (continued)

Tasks A man 175 cm tall stands in front of a vertical plane mirror. His eyes are 10 cm bellow the top of his head. What are the sizes and the best location of the smallest possible mirror so that he can see his entire body? Do these depend on his distance from the mirror? Why? How?

Refractive index In optics the refractive index or index of refraction n of an optical medium is a dimensionless number that describes how light, or any other radiation, propagates through that medium. It is defined as n = c/v, where c is the speed of light in vacuum and v is the speed of light in the substance. For example, the refractive index of water is 1.33, meaning that light travels 1.33 times faster in a vacuum than it does in water.

Snell's law Snell's law (also known as the Snell–Descartes law and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass and air.

Snell's law (continued) In optics, the law is used in ray tracing to compute the angles of incidence or refraction, and in experimental optics to find the refractive index of a material. The law is also satisfied in metamaterials, which allow light to be bent "backward" at a negative angle of refraction with a negative refractive index.

(continued) Snell's law Although named after Dutch astronomer Willebrord Snellius (1580–1626), the law was first accurately described by the scientist Ibn Sahl at the Baghdad court in 984. In the manuscript On Burning Mirrors and Lenses, Sahl used the law to derive lens shapes that focus light with no geometric aberrations.

Snell's law (continued) Snell's law states that the ratio of the sines of the angles of incidence and refraction is equivalent to the ratio of phase velocities in the two media, or equivalent to the reciprocal of the ratio of the indices of refraction: sin A1/sin A2 = v1/v2 = n2/n1

(continued) Snell's law

Optical power Optical power (also referred to as dioptric power, refractive power, focusing power, or convergence power) is the degree to which a lens, mirror, or other optical system converges or diverges light. It is equal to the reciprocal of the focal length of the device: P = 1/f.[1] High optical power corresponds to short focal length. The SI unit for optical power is the inverse metre (m−1), which is commonly called the dioptre. Converging lenses have positive optical power, while diverging lenses have negative power. When a lens is immersed in a refractive medium, its optical power and focal length change.

Lens Equation A common Gaussian form of the lens equation is shown below. This is the form used in most introductory textbooks. A form using the Cartesian sign convention is often used in more advanced texts because of advantages with multiple-lens systems and more complex optical instruments. Either form can be used with positive or negative lenses and predicts the formation of both real and virtual images. Does not apply to thick lenses.

Lens Equation (continued)

Lensmaker's equation The focal length of a lens in air can be calculated from the lensmaker's equation

Lensmaker's equation (continued)