Importance of the LNA. Importance of the LNA Importance of the LNA Friis’ Formula.

Slides:



Advertisements
Similar presentations
Oscillators: Analysis and Designs
Advertisements

B. BOUDJELIDA 2 nd SKADS Workshop October 2007 Large gate periphery InGaAs/InAlAs pHEMT: Measurement and Modelling for LNA fabrication B. Boudjelida,
RF Electronics Engineering
RF MICROELECTRONICS BEHZAD RAZAVI
Physical structure of a n-channel device:
Design of a Low-Noise 24 GHz Receiver Using MMICs Eric Tollefson, Rose-Hulman Institute of Technology Advisor: Dr. L. Wilson Pearson.
1 A Low Power CMOS Low Noise Amplifier for Ultra-wideband Wireless Applications 指導教授 : 林志明 學生 : 黃世一
Fall 06, Sep 19, 21 ELEC / Lecture 6 1 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.
Design of RF CMOS Low Noise Amplifiers Using a Current Based MOSFET Model Virgínia Helena Varotto Baroncini Oscar da Costa Gouveia Filho.
Distributed Power Amplifiers-Output Power and Efficiency Considerations Prasad N. Shastry (S. N. Prasad) 1, Senior Member, IEEE, and Amir S. Ibrahim 2.
Low Power RF/Analog Amplifier Design Tong Zhang Auburn University Tong Zhang Auburn University.
Microwave Interference Effects on Device,
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
An Integrated Solution for Suppressing WLAN Signals in UWB Receivers LI BO.
Spring 2007EE130 Lecture 38, Slide 1 Lecture #38 OUTLINE The MOSFET: Bulk-charge theory Body effect parameter Channel length modulation parameter PMOSFET.
Low-Noise Amplifier.
Low Noise Amplifier. DSB/SC-AM Modulation (Review)
CMOS RFIC Noise Canceling Method An Yong-jun.
An Ultra-Wideband CMOS Low Noise Amplifier for 3–5-GHz UWB System
ECE1352F University of Toronto 1 60 GHz Radio Circuit Blocks 60 GHz Radio Circuit Blocks Analog Integrated Circuit Design ECE1352F Theodoros Chalvatzis.
1 Wideband LNA for a Multistandard Wireless Receiver in 0.18μm CMOS 指導教授 : 林志明 學生 : 黃世一
Analytical Modeling of RF Noise in MOSFETs – A Review
Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase,
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 35 MOS Field-Effect Transistor (MOSFET) The MOSFET is an MOS capacitor with Source/Drain.
Noise characteristics Reference: [4] The signal-to-noise ratio is the measure for the extent to which a signal can be distinguished from the background.
WATERLOO ELECTRICAL AND COMPUTER ENGINEERING 30s: Silicon Devices and Integrated Circuits 1 WATERLOO ELECTRICAL AND COMPUTER ENGINEERING 30s Silicon Devices.
Design of LNA at 2.4 GHz Using 0.25 µm Technology
Seoul National University CMOS for Power Device CMOS for Power Device 전파공학 연구실 노 영 우 Microwave Device Term Project.
Study of 60GHz Wireless Network & Circuit Ahn Yong-joon.
Reconfigurable Ultra Low Power LNA for 2.4GHz Wireless Sensor Networks TarisT., Mabrouki A., Kraïmia H., Deval Y., Begueret J-B. Bordeaux, France.
RF System On Chip Quadrature VCO Comparison1/12 Fortià Vila VergésUniversitat Politecnica de Catalunya E.T.S.E.T.B. Fortià Vila Vergés 19th June 2007 Introduction.
An Ultra-Wide-Band GHz LNA in 0.18µm CMOS technology RF Communication Systems-on-chip Spring 2007.
Microwave Traveling Wave Amplifiers and Distributed Oscillators ICs in Industry Standard Silicon CMOS Kalyan Bhattacharyya Supervisors: Drs. J. Mukherjee.
A Ku-Band Interference-Rejection CMOS Low-Noise Amplifier Using Current-Reused Stacked Common-Gate Topology Adviser : Zhi-Ming Lin Postgraduate : Chia-Wei.
Presenter: Chun-Han Hou ( 侯 鈞 瀚)
Final Project in RFCS in the MINT Program of the UPC by Sven Günther
A New RF CMOS Gilbert Mixer With Improved Noise Figure and Linearity Yoon, J.; Kim, H.; Park, C.; Yang, J.; Song, H.; Lee, S.; Kim, B.; Microwave Theory.
18/10/20151 Calibration of Input-Matching and its Center Frequency for an Inductively Degenerated Low Noise Amplifier Laboratory of Electronics and Information.
Measurement of Integrated PA-to-LNA Isolation on Si CMOS Chip Ryo Minami , JeeYoung Hong , Kenichi Okada , and Akira Matsuzawa Tokyo Institute of Technology,
A 90nm CMOS Low Noise Amplifier Using Noise Neutralizing for GHz UWB System 指導教授:林志明 教授 級別:碩二 學生:張家瑋 Chao-Shiun Wang; Chorng-Kuang Wang; Solid-State.
1 A CMOS 5-GHz Micro-Power LNA 指導教授 : 林志明 教授 學生 : 黃世一 Hsieh-Hung Hsieh and Liang-Hung Lu Department of Electrical Engineering and Graduate Institute of.
A High-Gain, Low-Noise, +6dBm PA in 90nm CMOS for 60-GHz Radio
A 1-V 15  W High-Precision Temperature Switch D. Schinkel, R.P. de Boer, A.J. Annema and A.J.M. van Tuijl A 1-V 15  W High-Precision Temperature Switch.
1 5. SOURCES OF ERRORS Fundamentals of low-noise design 5.5. Fundamentals of low-noise design.
Phan Tuan Anh Dec Reconfigurable Multiband Multimode LNA for LTE/GSM, WiMAX, and IEEE a/b/g/n 17 th IEEE ICECS 2010, Athens, Greece.
University of Toronto - Chihou Lee UltraWideBand a.k.a. UWB Chihou Lee : ECE1352 : December 2003.
A NEW METHOD TO STABILIZE HIGH FREQUENCY HIGH GAIN CMOS LNA RF Communications Systems-on-chip Primavera 2007 Pierpaolo Passarelli.
An Ultra-low Voltage UWB CMOS Low Noise Amplifier Presenter: Chun-Han Hou ( 侯 鈞 瀚 ) 1 Yueh-Hua Yu, Yi-Jan Emery Chen, and Deukhyoun Heo* Department of.
1 Your Name Your Department or Company Date, 2015.
RFIC – Atlanta June 15-17, 2008 RTU1A-5 A 25 GHz 3.3 dB NF Low Noise Amplifier based upon Slow Wave Transmission Lines and the 0.18 μm CMOS Technology.
Sanae Boulay, Limelette, Nov 05 th 20091/20 S. Boulay, B. Boudjelida, A. Sharzad, N. Ahmad, M. Missous Novel Ultra Low Noise Amplifiers based on InGaAs/InAlAs.
class B, AB and D rf power amplifiers in 0,40 um cmos teChnology
Introduction LNA Design figure of merits: operating power consumption, power gain, supply voltage level, noise figure, stability (Kf & B1f), linearity.
ANALOGUE ELECTRONICS CIRCUITS 1
© Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 2.5V, 77-GHz, Automotive Radar Chipset Sean T. Nicolson 1, Keith A. Tang 1, Kenneth H.K. Yau 1, Pascal.
Rakshith Venkatesh 14/27/2009. What is an RF Low Noise Amplifier? The low-noise amplifier (LNA) is a special type of amplifier used in the receiver side.
ECE 4710: Lecture #37 1 Link Budget Analysis  BER baseband performance determined by signal to noise ratio ( S / N ) at input to detector (product, envelope,
Veljko Radeka, Sergio Rescia, Gianluigi De Geronimo Instrumentation Division, Brookhaven National Laboratory, Upton, NY Induced Gate Noise in Charge Detection.
3-Stage Low Noise Amplifier Design at 12Ghz
VLSI Masoumeh Ebrahimi Mismatch of MOS Transistor.
Advanced Science and Technology Letters Vol.28 (EEC 2013), pp Design of a 0.97dB, 5.8GHz fully integrated.
1 5. SOURCES OF ERRORS Fundamentals of low-noise design 5.5. Fundamentals of low-noise design.
Integrated Phased Array Systems in Silicon
Transimpedance Amplifiers in CMOS Technology
Communication 40 GHz Anurag Nigam.
Noise Analysis of CMOS Readouot Ciruits
Input Stages for Radio Systems (Low Noise Amplifiers) (LNAs)
A 3.1–10.6 GHz Ultra-Wideband CMOS Low Noise Amplifier With Current-Reused Technique Microwave and Wireless Components Letters, IEEE Volume 17,  Issue.
Ali Fard M¨alardalen University, Dept
5.8GHz CMOS 射頻前端接收電路 晶片設計實作 5.8GHz CMOS Front-End Circuit Design
Presentation transcript:

Importance of the LNA

Importance of the LNA Friis’ Formula

Importance of the LNA X Friis’ Formula Digital Electronics CMOS LNA Low Cost High Integration Integration With Digital IC X Larger Parasitic Capisitance

Importance of the LNA X Friis’ Formula RF Hexagon Digital Electronics CMOS LNA Low Cost High Integration Integration With Digital IC X Larger Parasitic Capisitance

Why Inductive Degenerated LNA? 2-Port Noise Theory

Why Inductive Degenerated LNA? 2-Port Noise Theory

CMOS small signal equivalent Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent

Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution

Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution

Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution Power Matching X

Inductive Source Degeneration Inductive Degenerated LNA Inductive Source Degeneration Input Power Matching Bond Wire Inductance

Inductive Degenerated LNA Inductive Source Degeneration Small Signal Equivalent Input Power Matching Bond Wire Inductance

Inductive Degenerated LNA Inductive Source Degeneration Small Signal Equivalent Input Power Matching Bond Wire Inductance Power Matching

Inductive Degenerated LNA Inductive Source Degeneration Small Signal Equivalent Input Power Matching Bond Wire Inductance Power Matching

Inductive Degenerated LNA Inductive Source Degeneration Small Signal Equivalent Input Power Matching Bond Wire Inductance Power Matching

Basic Equation of MOS Drain Definitions Basic Equation of MOS Drain

Basic Equation of MOS Drain Definitions Basic Equation of MOS Drain

Basic Equation of MOS Drain Definitions Basic Equation of MOS Drain

Basic Equation of MOS Drain Definitions Basic Equation of MOS Drain

Basic Equation of MOS Drain Definitions Basic Equation of MOS Drain Long Channel Short Channel

Inductive Specified Technique 1st step: Setting the value of Ls

Inductive Specified Technique 1st step: Setting the value of Ls 2nd step: Finding the value of ωt.Ls From Impendance Matching:

Inductive Specified Technique 1st step: Setting the value of Ls 2nd step: Finding the value of ωt.Ls From Impendance Matching: 3rd step: Finding the optimum Qs

Inductive Specified Technique 1st step: Setting the value of Ls 2nd step: Finding the value of ωt.Ls From Impendance Matching: 3rd step: Finding the optimum Qs 4th step: Finding the value of Lg From Impendance Matching:

Inductive Specified Technique 1st step: Setting the value of Ls 2nd step: Finding the value of ωt.Ls From Impendance Matching: 3rd step: Finding the optimum Qs 4th step: Finding the value of Lg From Impendance Matching: 5th step: Finding the optimum Cgs From Impendance Matching:

Inductive Specified Technique 6th step: Finding the optimum device’s width Wopt,Ls

Inductive Specified Technique 6th step: Finding the optimum device’s width Wopt,Ls 7th step: Finding the optimum device’s transconductance gm.opt.Ls From Impendance Matching:

! Inductive Specified Technique 6th step: Finding the optimum device’s width Wopt,Ls 7th step: Finding the optimum device’s transconductance gm.opt.Ls From Impendance Matching: 8th step: Finding the optimum ρ and Vod !

! Inductive Specified Technique 6th step: Finding the optimum device’s width Wopt,Ls 7th step: Finding the optimum device’s transconductance gm.opt.Ls From Impendance Matching: 8th step: Finding the optimum ρ and Vod ! 9th step: Finding the current consumption ID.Ls

Current Specified Technique 1st step: Setting the current consumption ID

Current Specified Technique 1st step: Setting the current consumption ID 2nd step: Finding the optimum ρ and Vod

Current Specified Technique 1st step: Setting the current consumption ID 2nd step: Finding the optimum ρ and Vod 3nd step: Finding the optimum Qs From 2nd Step:

Current Specified Technique 1st step: Setting the current consumption ID 2nd step: Finding the optimum ρ and Vod 3nd step: Finding the optimum Qs From 2nd Step: 4th step: Finding the optimum device width Wopt,I From 3rd Step & Impendance Matching:

Current Specified Technique 1st step: Setting the current consumption ID 2nd step: Finding the optimum ρ and Vod 3nd step: Finding the optimum Qs From 2nd Step: 4th step: Finding the optimum device width Wopt,I From 3rd Step & Impendance Matching: 5nd step: Finding the value of ωt.I From 2nd Step:

Current Specified Technique 6th step: Finding the optimum device transconductance gm.opt.I From 2nd , 3rd Step & Impendance Matching:

Current Specified Technique 6th step: Finding the optimum device transconductance gm.opt.I From 2nd , 3rd Step & Impendance Matching: 7th step: Finding the optimum Cgs From 5th , 6th Step :

Current Specified Technique 6th step: Finding the optimum device transconductance gm.opt.I From 2nd , 3rd Step & Impendance Matching: 7th step: Finding the optimum Cgs From 5th , 6th Step : 8th step: Finding the optimum Ls From 6th , 7th Step & Impendance Matching:

Current Specified Technique 6th step: Finding the optimum device transconductance gm.opt.I From 2nd , 3rd Step & Impendance Matching: 7th step: Finding the optimum Cgs From 5th , 6th Step : 8th step: Finding the optimum Ls From 6th , 7th Step & Impendance Matching: 9th step: Finding the optimum Lg From 6th , 7th Step & Impendance Matching:

Comparison Results Inductive Specified Technique

Comparison Results Inductive Specified Technique

Comparison Results Inductive Specified Technique Parameters:

Comparison Results Inductive Specified Technique @ 1.6 GHz ID= 1.7mA Vod=120mV

Comparison Results Inductive Specified Technique @ 2.5 GHz ID= 1.1mA Vod=120mV

Comparison Results Inductive Specified Technique @ 5.5 GHz ID= 0.5mA Vod=120mV

Comparison Results Inductive Specified Technique Vod ≤ 150 mV

Comparison Results Inductive Specified Technique @ 1.6 GHz ID= 2.4mA Vod=138mV

Comparison Results Inductive Specified Technique @ 2.5 GHz ID= 1.5mA Vod=138mV

Comparison Results Inductive Specified Technique @ 5.5 GHz ID= 0.7mA Vod=138mV

Comparison Results Inductive Specified Technique Vod ≤ 150 mV

Comparison Results Inductive Specified Technique @ 1.6 GHz ID= 3.2mA Vod=162mV

Comparison Results Inductive Specified Technique @ 2.5 GHz ID= 2.1mA Vod=162mV

Comparison Results Inductive Specified Technique @ 5.5 GHz ID= 0.7mA Vod=162mV

Comparison Results Inductive Specified Technique Vod ≥ 150 mV

Comparison Results Inductive Specified Technique Vod ≥ 150 mV

Comparison Results Inductive Specified Technique Vod ≥ 150 mV

Comparison Results Inductive Specified Technique Vod ≥ 150 mV

Comparison Results Inductive Specified Technique Vod ≥ 150 mV

Comparison Results Inductive Specified Technique Vod ≥ 150 mV

Comparison Results Inductive Specified Technique Ls = 1.2nH ID= 0.9mA NFmin= 6.1dB

Comparison Results Inductive Specified Technique Ls = 1nH ID= 1.4mA NFmin= 5.6dB

Comparison Results Inductive Specified Technique Ls = 0.8nH ID= 2.2mA NFmin= 5dB

Comparison Results Inductive Specified Technique Ls = 0.6nH ID= 4mA NFmin= 4dB

Comparison Results Inductive Specified Technique ID NFmin

Comparison Results Inductive Specified Technique ID NFmin

Comparison Results Inductive Specified Technique ID NFmin

Comparison Results Inductive Specified Technique ID NFmin L LS ID

Comparison Results Current Specified Technique

Comparison Results Current Specified Technique

Comparison Results Current Specified Technique Parameters:

Comparison Results Current Specified Technique @ 1.6 GHz LS=3.1nH Vod=60mV

Comparison Results Current Specified Technique @ 2.5 GHz LS=2.5nH Vod=76mV

Comparison Results Current Specified Technique @ 5.5 GHz LS=1.7nH Vod=112mV

Comparison Results Current Specified Technique @ 1.6 GHz LS=2.2nH Vod=85mV

Comparison Results Current Specified Technique @ 2.5 GHz LS=1.7nH Vod=107mV

Comparison Results Current Specified Technique @ 5.5 GHz LS=1.2nH Vod=158mV

Comparison Results Current Specified Technique

Comparison Results Current Specified Technique Vod,opt ≥ 150mV 3nH ≥ LS ≥ 0.5nH

Comparison Results Current Specified Technique ID NFmin

Comparison Results Current Specified Technique ID NFmin

Comparison Results Current Specified Technique ID NFmin L LS ID

Conclusion Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls gm.opt.Ls ρ ID.Ls

Conclusion Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls gm.opt.Ls ρ ID.Ls Current Specified Technique ID p Qs Wopt,I ωt.I gm.opt.I Cgs LS,opt,I Lg

Conclusion Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls gm.opt.Ls ρ ID.Ls Current Specified Technique ID p Qs Wopt,I ωt.I gm.opt.I Cgs LS,opt,I Lg Same Results for Same Numbers from the two techniques

Conclusion X Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls gm.opt.Ls ρ ID.Ls Current Specified Technique ID p Qs Wopt,I ωt.I gm.opt.I Cgs LS,opt,I Lg Same Results for Same Numbers from the two techniques X Noise minimization for different values than those for Power Matching

Conclusion X Future Work: Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls gm.opt.Ls ρ ID.Ls Current Specified Technique ID p Qs Wopt,I ωt.I gm.opt.I Cgs LS,opt,I Lg Same Results for Same Numbers from the two techniques X Noise minimization for different values than those for Power Matching Future Work: Work for Linearity Include all the theory in a toolkit for giving Guidelines

References [1] Hashemi, H. and Hajimiri A., “Concurrent multiband low-noise amplifiers-theory, design and applications,” IEEE Trans. Mircrowave theory and techniques,52(1), pp.288–301, 2002. [2] Lee, T.H. The design of CMOS Radio Frequency Integrated Circuits., Cambridge Univ. Press, Cambridge, 1998. [3] Voinigescu, S. P., Maliepaard, M.C., Showell, J.L., Babcock, G.E., Marchesan, D., Schroter, M., Schvan, P. and Harame, D.L. “A scalable high-frequency noise model for bipolar transistors with application optimal transistor sizing for low-noise amplifier design,” IEEE J. Solid-State Circuits,32(9), pp.1430–1439, 1997. [4] Shaeffer, D. K. and Lee, T.H., “A 1.5 V, 1.5 GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits,32(5),745–758,1997. [5] Andreani P. Sjöland H., “Noise optimization of an inductively degenerated CMOS low noise amplifier,” IEEE Trans. Circuits Syst., 48, pp.835–841, Sept. 2001.

Thank you for you attention !