Importance of the LNA
Importance of the LNA Friis’ Formula
Importance of the LNA X Friis’ Formula Digital Electronics CMOS LNA Low Cost High Integration Integration With Digital IC X Larger Parasitic Capisitance
Importance of the LNA X Friis’ Formula RF Hexagon Digital Electronics CMOS LNA Low Cost High Integration Integration With Digital IC X Larger Parasitic Capisitance
Why Inductive Degenerated LNA? 2-Port Noise Theory
Why Inductive Degenerated LNA? 2-Port Noise Theory
CMOS small signal equivalent Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent
Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution
Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution
Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution Power Matching X
Inductive Source Degeneration Inductive Degenerated LNA Inductive Source Degeneration Input Power Matching Bond Wire Inductance
Inductive Degenerated LNA Inductive Source Degeneration Small Signal Equivalent Input Power Matching Bond Wire Inductance
Inductive Degenerated LNA Inductive Source Degeneration Small Signal Equivalent Input Power Matching Bond Wire Inductance Power Matching
Inductive Degenerated LNA Inductive Source Degeneration Small Signal Equivalent Input Power Matching Bond Wire Inductance Power Matching
Inductive Degenerated LNA Inductive Source Degeneration Small Signal Equivalent Input Power Matching Bond Wire Inductance Power Matching
Basic Equation of MOS Drain Definitions Basic Equation of MOS Drain
Basic Equation of MOS Drain Definitions Basic Equation of MOS Drain
Basic Equation of MOS Drain Definitions Basic Equation of MOS Drain
Basic Equation of MOS Drain Definitions Basic Equation of MOS Drain
Basic Equation of MOS Drain Definitions Basic Equation of MOS Drain Long Channel Short Channel
Inductive Specified Technique 1st step: Setting the value of Ls
Inductive Specified Technique 1st step: Setting the value of Ls 2nd step: Finding the value of ωt.Ls From Impendance Matching:
Inductive Specified Technique 1st step: Setting the value of Ls 2nd step: Finding the value of ωt.Ls From Impendance Matching: 3rd step: Finding the optimum Qs
Inductive Specified Technique 1st step: Setting the value of Ls 2nd step: Finding the value of ωt.Ls From Impendance Matching: 3rd step: Finding the optimum Qs 4th step: Finding the value of Lg From Impendance Matching:
Inductive Specified Technique 1st step: Setting the value of Ls 2nd step: Finding the value of ωt.Ls From Impendance Matching: 3rd step: Finding the optimum Qs 4th step: Finding the value of Lg From Impendance Matching: 5th step: Finding the optimum Cgs From Impendance Matching:
Inductive Specified Technique 6th step: Finding the optimum device’s width Wopt,Ls
Inductive Specified Technique 6th step: Finding the optimum device’s width Wopt,Ls 7th step: Finding the optimum device’s transconductance gm.opt.Ls From Impendance Matching:
! Inductive Specified Technique 6th step: Finding the optimum device’s width Wopt,Ls 7th step: Finding the optimum device’s transconductance gm.opt.Ls From Impendance Matching: 8th step: Finding the optimum ρ and Vod !
! Inductive Specified Technique 6th step: Finding the optimum device’s width Wopt,Ls 7th step: Finding the optimum device’s transconductance gm.opt.Ls From Impendance Matching: 8th step: Finding the optimum ρ and Vod ! 9th step: Finding the current consumption ID.Ls
Current Specified Technique 1st step: Setting the current consumption ID
Current Specified Technique 1st step: Setting the current consumption ID 2nd step: Finding the optimum ρ and Vod
Current Specified Technique 1st step: Setting the current consumption ID 2nd step: Finding the optimum ρ and Vod 3nd step: Finding the optimum Qs From 2nd Step:
Current Specified Technique 1st step: Setting the current consumption ID 2nd step: Finding the optimum ρ and Vod 3nd step: Finding the optimum Qs From 2nd Step: 4th step: Finding the optimum device width Wopt,I From 3rd Step & Impendance Matching:
Current Specified Technique 1st step: Setting the current consumption ID 2nd step: Finding the optimum ρ and Vod 3nd step: Finding the optimum Qs From 2nd Step: 4th step: Finding the optimum device width Wopt,I From 3rd Step & Impendance Matching: 5nd step: Finding the value of ωt.I From 2nd Step:
Current Specified Technique 6th step: Finding the optimum device transconductance gm.opt.I From 2nd , 3rd Step & Impendance Matching:
Current Specified Technique 6th step: Finding the optimum device transconductance gm.opt.I From 2nd , 3rd Step & Impendance Matching: 7th step: Finding the optimum Cgs From 5th , 6th Step :
Current Specified Technique 6th step: Finding the optimum device transconductance gm.opt.I From 2nd , 3rd Step & Impendance Matching: 7th step: Finding the optimum Cgs From 5th , 6th Step : 8th step: Finding the optimum Ls From 6th , 7th Step & Impendance Matching:
Current Specified Technique 6th step: Finding the optimum device transconductance gm.opt.I From 2nd , 3rd Step & Impendance Matching: 7th step: Finding the optimum Cgs From 5th , 6th Step : 8th step: Finding the optimum Ls From 6th , 7th Step & Impendance Matching: 9th step: Finding the optimum Lg From 6th , 7th Step & Impendance Matching:
Comparison Results Inductive Specified Technique
Comparison Results Inductive Specified Technique
Comparison Results Inductive Specified Technique Parameters:
Comparison Results Inductive Specified Technique @ 1.6 GHz ID= 1.7mA Vod=120mV
Comparison Results Inductive Specified Technique @ 2.5 GHz ID= 1.1mA Vod=120mV
Comparison Results Inductive Specified Technique @ 5.5 GHz ID= 0.5mA Vod=120mV
Comparison Results Inductive Specified Technique Vod ≤ 150 mV
Comparison Results Inductive Specified Technique @ 1.6 GHz ID= 2.4mA Vod=138mV
Comparison Results Inductive Specified Technique @ 2.5 GHz ID= 1.5mA Vod=138mV
Comparison Results Inductive Specified Technique @ 5.5 GHz ID= 0.7mA Vod=138mV
Comparison Results Inductive Specified Technique Vod ≤ 150 mV
Comparison Results Inductive Specified Technique @ 1.6 GHz ID= 3.2mA Vod=162mV
Comparison Results Inductive Specified Technique @ 2.5 GHz ID= 2.1mA Vod=162mV
Comparison Results Inductive Specified Technique @ 5.5 GHz ID= 0.7mA Vod=162mV
Comparison Results Inductive Specified Technique Vod ≥ 150 mV
Comparison Results Inductive Specified Technique Vod ≥ 150 mV
Comparison Results Inductive Specified Technique Vod ≥ 150 mV
Comparison Results Inductive Specified Technique Vod ≥ 150 mV
Comparison Results Inductive Specified Technique Vod ≥ 150 mV
Comparison Results Inductive Specified Technique Vod ≥ 150 mV
Comparison Results Inductive Specified Technique Ls = 1.2nH ID= 0.9mA NFmin= 6.1dB
Comparison Results Inductive Specified Technique Ls = 1nH ID= 1.4mA NFmin= 5.6dB
Comparison Results Inductive Specified Technique Ls = 0.8nH ID= 2.2mA NFmin= 5dB
Comparison Results Inductive Specified Technique Ls = 0.6nH ID= 4mA NFmin= 4dB
Comparison Results Inductive Specified Technique ID NFmin
Comparison Results Inductive Specified Technique ID NFmin
Comparison Results Inductive Specified Technique ID NFmin
Comparison Results Inductive Specified Technique ID NFmin L LS ID
Comparison Results Current Specified Technique
Comparison Results Current Specified Technique
Comparison Results Current Specified Technique Parameters:
Comparison Results Current Specified Technique @ 1.6 GHz LS=3.1nH Vod=60mV
Comparison Results Current Specified Technique @ 2.5 GHz LS=2.5nH Vod=76mV
Comparison Results Current Specified Technique @ 5.5 GHz LS=1.7nH Vod=112mV
Comparison Results Current Specified Technique @ 1.6 GHz LS=2.2nH Vod=85mV
Comparison Results Current Specified Technique @ 2.5 GHz LS=1.7nH Vod=107mV
Comparison Results Current Specified Technique @ 5.5 GHz LS=1.2nH Vod=158mV
Comparison Results Current Specified Technique
Comparison Results Current Specified Technique Vod,opt ≥ 150mV 3nH ≥ LS ≥ 0.5nH
Comparison Results Current Specified Technique ID NFmin
Comparison Results Current Specified Technique ID NFmin
Comparison Results Current Specified Technique ID NFmin L LS ID
Conclusion Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls gm.opt.Ls ρ ID.Ls
Conclusion Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls gm.opt.Ls ρ ID.Ls Current Specified Technique ID p Qs Wopt,I ωt.I gm.opt.I Cgs LS,opt,I Lg
Conclusion Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls gm.opt.Ls ρ ID.Ls Current Specified Technique ID p Qs Wopt,I ωt.I gm.opt.I Cgs LS,opt,I Lg Same Results for Same Numbers from the two techniques
Conclusion X Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls gm.opt.Ls ρ ID.Ls Current Specified Technique ID p Qs Wopt,I ωt.I gm.opt.I Cgs LS,opt,I Lg Same Results for Same Numbers from the two techniques X Noise minimization for different values than those for Power Matching
Conclusion X Future Work: Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls gm.opt.Ls ρ ID.Ls Current Specified Technique ID p Qs Wopt,I ωt.I gm.opt.I Cgs LS,opt,I Lg Same Results for Same Numbers from the two techniques X Noise minimization for different values than those for Power Matching Future Work: Work for Linearity Include all the theory in a toolkit for giving Guidelines
References [1] Hashemi, H. and Hajimiri A., “Concurrent multiband low-noise amplifiers-theory, design and applications,” IEEE Trans. Mircrowave theory and techniques,52(1), pp.288–301, 2002. [2] Lee, T.H. The design of CMOS Radio Frequency Integrated Circuits., Cambridge Univ. Press, Cambridge, 1998. [3] Voinigescu, S. P., Maliepaard, M.C., Showell, J.L., Babcock, G.E., Marchesan, D., Schroter, M., Schvan, P. and Harame, D.L. “A scalable high-frequency noise model for bipolar transistors with application optimal transistor sizing for low-noise amplifier design,” IEEE J. Solid-State Circuits,32(9), pp.1430–1439, 1997. [4] Shaeffer, D. K. and Lee, T.H., “A 1.5 V, 1.5 GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits,32(5),745–758,1997. [5] Andreani P. Sjöland H., “Noise optimization of an inductively degenerated CMOS low noise amplifier,” IEEE Trans. Circuits Syst., 48, pp.835–841, Sept. 2001.
Thank you for you attention !