Practical Course SC & V Discretization II AVS Dr. Miriam Mehl

Slides:



Advertisements
Similar presentations
Stable Fluids A paper by Jos Stam.
Advertisements

Courant and all that Consistency, Convergence Stability Numerical Dispersion Computational grids and numerical anisotropy The goal of this lecture is to.
Technische Universität München Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD - Free Boundary Value Problems Tobias.
Lab Course CFD Preliminay Discussion Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Practical Course SC & V Free Boundary Value Problems Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Practical Course SC & V Free Boundary Value Problems Prof. Dr. Hans-Joachim Bungartz Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Practical Course SC & V More on Boundaries Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Practical Course SC & V Free Boundary Value Problems Prof. Dr. Hans-Joachim Bungartz Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Institut für Informatik Scientific Computing in Computer Science Practical Course SC & V Time Discretisation Dr. Miriam Mehl.
My First Fluid Project Ryan Schmidt. Outline MAC Method How far did I get? What went wrong? Future Work.
Transfer coefficient algorithm for small mass nodes in material point method Xia Ma, Balaji Jayaraman, Paul T. Giguere and Duan Z. Zhang CartaBlanca Team.
Computer Aided Thermal Fluid Analysis Lecture 10
Lectures on CFD Fundamental Equations
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 18.
06-1 Physics I Class 06 Conservation of Momentum.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 27.
Modeling, Simulating and Rendering Fluids Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan.
Lecture Objectives: Review discretization methods for advection diffusion equation Accuracy Numerical Stability Unsteady-state CFD Explicit vs. Implicit.
Lecture Objectives Review SIMPLE CFD Algorithm SIMPLE Semi-Implicit Method for Pressure-Linked Equations Define Residual and Relaxation.
Chapter 7 Linear Momentum. Chapter Momentum Linear Momentum- product of mass times velocity p=mvp=momentum units=kg.m/sec Restate Newton’s second.
Next Class Final Project and Presentation – Prepare and me the ppt files 5-7 slides Introduce your problem (1-2 slides) – Problem – Why CFD? Methods.
Page 1 JASS 2004 Tobias Weinzierl Sophisticated construction ideas of ansatz- spaces How to construct Ritz-Galerkin ansatz-spaces for the Navier-Stokes.
CENTRAL AEROHYDRODYNAMIC INSTITUTE named after Prof. N.E. Zhukovsky (TsAGI) Multigrid accelerated numerical methods based on implicit scheme for moving.
1 Discretization of Fluid Models (Navier Stokes) Dr. Farzad Ismail School of Aerospace and Mechanical Engineering Universiti Sains Malaysia Nibong Tebal.
Modeling of Materials Processes using Dimensional Analysis and Asymptotic Considerations Patricio Mendez, Tom Eagar Welding and Joining Group Massachusetts.
Mass Transfer Coefficient
+ Numerical Integration Techniques A Brief Introduction By Kai Zhao January, 2011.
Mathematical Background
Lecture Objectives Review Define Residual and Relaxation SIMPLE CFD Algorithm SIMPLE Semi-Implicit Method for Pressure-Linked Equations.
The Generalized Interpolation Material Point Method.
Material Point Method Solution Procedure Wednesday, 10/9/2002 Map from particles to grid Interpolate from grid to particles Constitutive model Boundary.
Part 1 Chapter 1 Mathematical Modeling, Numerical Methods, and Problem Solving PowerPoints organized by Dr. Michael R. Gustafson II, Duke University and.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl.
Discretization Methods Chapter 2. Training Manual May 15, 2001 Inventory # Discretization Methods Topics Equations and The Goal Brief overview.
Authored by : Dr. Harold Alden Williams Montgomery College at the Takoma Park/Silver Spring Campus, Planetarium Director and Physics and Geology Laboratory.
Scientific Computing Lab Results Worksheet 4 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Multigrid Methods The Implementation Wei E Universität München. Ferien Akademie 19 th Sep
Lecture Objectives: Define 1) Reynolds stresses and
Part 1 Chapter 1 Mathematical Modeling, Numerical Methods, and Problem Solving PowerPoints organized by Dr. Michael R. Gustafson II, Duke University and.
Lab Course CFD Introduction Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Lab Course CFD Introduction Dr. Miriam Mehl. CFD – Applications stirrers.
Animating smoke with dynamic balance Jin-Kyung Hong Chang-Hun Kim 발표 윤종철.
Computer Animation Rick Parent Computer Animation Algorithms and Techniques Computational Fluid Dynamics.
Computational Fluid Dynamics Lecture II Numerical Methods and Criteria for CFD Dr. Ugur GUVEN Professor of Aerospace Engineering.
Formula Momentum (p) = Mass x velocity Unit is kgm/s.
Scientific Computing Lab
Scientific Computing Lab
Numerical Simulation of N-S equations in Cylindrical Coordinate
Lecture Objectives: Review Explicit vs. Implicit
Pressure Poisson Equation
Objective Review Reynolds Navier Stokes Equations (RANS)
Space Distribution of Spray Injected Fluid
Scientific Computing Lab
Mathematical Modeling, Numerical Methods, and Problem Solving
Ordinary differential equaltions:
Introduction to Scientific Computing II
Multiple Stage Kinematics Problems
Introduction to Scientific Computing II
Objective Numerical methods Finite volume.
Lecture Objectives Review for exam Discuss midterm project
Driven Lid Partially Filled Porous Cavity - Single Domain Approach
Scientific Computing Lab
Introduction to Fluid Dynamics & Applications
Scientific Computing Lab
Problem Set #3 – Part 3 - Remediation
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Scientific Computing Lab
Spatial Discretisation
Presentation transcript:

Practical Course SC & V Discretization II AVS Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen Practical Course SC & V Discretization II AVS Dr. Miriam Mehl

What We Know Euler step for momentum equations pressure ensures mass conservation poisson equation correction of velocities

Time Step – Stability small reynolds number: dt < dx2 high reynolds number: dt < dx

Boundaries continuous boundary conditions discrete boundary conditions modified discrete operators

Boundaries discrete momentum equations discrete boundary conditions for pressure

Algorithm (One Time Step) compute time step dt set boundary values compute preliminary velocities solve pressure equation compute final velocities

Discretization II Re >> 1 oscillations!!! reason: discrete convection terms remedy: Donor cell scheme stable lower order of accuracy

Debugging simple setup: one(!!!) time step external forces zero test preliminary velocities at boundaries test residual of the pressure equation

Debugging enhanced setup: initialize velocities constant but with nonzero boundary values test preliminary velocities finally: simulate driven cavity

Result

AVS

AVS

AVS

AVS

AVS

AVS