Faraday’s Law of E&M Induction

Slides:



Advertisements
Similar presentations
Chapter 30. Induction and Inductance
Advertisements

F=BqvsinQ for a moving charge F=BIlsinQ for a current
Electromagnetic Induction
Electromagnetic Induction Inductors. Problem A metal rod of length L and mass m is free to slide, without friction, on two parallel metal tracks. The.
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Physics 1304: Lecture 13, Pg 1 Faraday’s Law and Lenz’s Law ~ B(t) i.
Walker, Chapter 23 Magnetic Flux and Faraday’s Law of Induction
Physics 121 Practice Problem Solutions 11 Faraday’s Law of Induction
Physics 121: Electricity & Magnetism – Lecture 11 Induction I Dale E. Gary Wenda Cao NJIT Physics Department.
Induction and Inductance Chapter 30 Magnetic Flux.
1 Faraday’s Law Chapter Ampere’s law Magnetic field is produced by time variation of electric field.
When a coil of wire and a bar magnet are moved in relation to each other, an electric current is produced. This current is produced because the strength.
Announcements WebAssign HW Set 7 due this Friday
Today’s Concept: Faraday’s Law Lenz’s Law
General electric flux definition
Chapter 31 Faraday’s Law.
1 Electromagnetic Induction Chapter Induction A loop of wire is connected to a sensitive ammeter When a magnet is moved toward the loop, the ammeter.
MAGNETIC INDUCTION MAGNETUIC FLUX: FARADAY’S LAW, INDUCED EMF:
Magnetic Induction - magnetic flux - induced emf
Generators & Motors Textbook Sections 23-6 – Physics.
PHYSICS 222 EXAM 2 REVIEW SI LEADER: ROSALIE DUBBERKE.
SI leader: Rosalie Dubberke
Magnetism #2 Induced EMF Ch.20. Faraday’s Law of Induction We now know that a current carrying wire will produce its own magnetic field with the lines.
PHY 102: Lecture Induced EMF, Induced Current 7.2 Motional EMF
Finally! Flux! Electromagnetic Induction. Objectives.
It works because of the force produced by the motor effect on the free electrons in a conductor: v B The size of the force on the electrons due to their.
BASIC ELECTRICAL TECHNOLOGY DET 211/3
Two questions: (1) How to find the force, F on the electric charge, Q excreted by the field E and/or B? (2) How fields E and/or B can be created?
Induced emf Experiment:
Chapter 21: Electromagnetic Induction
Motional EMF.
EMF Induced in a Moving Conductor (“Motional EMF”)
Flux Faraday’s law Lenz’s law Examples Generator
ElectroMagnetic Induction
Lecture 3-5 Faraday’ s Law (pg. 24 – 35)
Magnetic Induction Review of Chapter 22.
Electromagnetic induction
Magnetism & Electromagnetism
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Electromagnetic Induction
Changing Magnetic Fields create Electric Fields

General Review Electrostatics Magnetostatics Electrodynamics
General Physics (PHY 2140) Lecture 16 Electricity and Magnetism
Chapter 31A - Electromagnetic Induction
IB Physics – Induced Emf, ε. (Discovered by Michael Faraday ( )
I2 is decreasing in magnitude I2 is constant
Electromagnetic Induction
Unit 9, Lesson 4: Magnetic Flux
Faraday’s Law ε ε Flux linking coil =  N t = - DF D t = - DF
Phys102 Lecture 18/19 Electromagnetic Induction and Faraday’s Law
Chapter 20 Section 1 Section 1 Electricity from Magnetism.
Topic 12.1 Electromagnetic Induction
Electromagnetic induction
Professor Stephen Thornton October 15, 2012
Objectives: After completing this module, you should be able to:
EMF Induced in a Moving Conductor (“Motional EMF”)
Changing Magnetic Fields create Electric Fields
Objectives: After completing this module, you should be able to:
Physics 6B Magnetic Induction Prepared by Vince Zaccone
Two questions: (1) How to find the force, F on the electric charge, Q excreted by the field E and/or B? (2) How fields E and/or B can be created?
Electromagnetic Induction
ConcepTest Clicker Questions College Physics, 7th Edition
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Magnets, how do they work?
Electricity and Magnetism
Induction and Inductance Chapter 30
ElectroMagnetic Induction
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
MSTC AP Physics 2 Chapter 20 Section 1.
Presentation transcript:

Faraday’s Law of E&M Induction How can one produce el. current - I? Observations: A magnet is pulled toward/away from the coil A coil moves toward/away from the magnet The coil changes its area (magnet is stationary) The coil is spinning (magnet is stationary) All of the above at the same time

v +++ --- As we do this, using F=qvxB we find that the positive charges will be pushed down the wire and negative charges will be pushed up the wire. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Let’s pull the above wire through a B-field with a constant velocity as shown.

The balance happens when E = vB. --- v FBD of a single + charge · · · · · · · · · · · · qE · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · + · · · · · · · · · · · · · · · · · · · · · · · · +++ qvB Let’s take a look at the + charges. The Forces on a + charge above will be: Fmag = qvB Felectric = qE The balance happens when E = vB.

The balance happens when E = vB. The Voltage across the top of the wire and the bottom of the wire will be: Vwire = ELwire FBD of a single + charge qE + qvB The balance happens when E = vB. Thus: V = vLB

33.2 The Earth’s Magnetic field strength is 50 T. How fast would you have to drive your car to create a 1.0V motional emf along your 1.0m long radio antenna? (You can assume that the motion to the antenna is perpendicular to B.) V = vLB

Magnetic Flux In order to describe our model we need to introduce the concept of MAGNETIC FLUX Magnetic flux represents the number of magnetic field lines going through the loop. The Unit of FB is Tm2 (Weber =1Tx1m2).

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · B C A · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Each of these three loops is moving with a constant velocity to the right. What can you tell me about the current in each loop?

Which direction does the current travel? · · · · · · · · · · · · · · · · · · · · · · · · B C A · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Clockwise Counter-Clockwise There is no current.

Finger PRS: Magnetic Flux You measure the magnetic flux through the surface of a closed loop to be zero (FB=0), then you conclude that: There is no magnetic field in space. Magnetic field lines are perpendicular to the surface of the loop. Magnetic field lines are parallel to the surface of the loop. The effective area of the loop is zero. Statements 1,3,4 can be true. Statements 1,2, 3,4 can be true.

Faraday’s Law of EM Induction Induced EMF (e) is proportional to the rate of change of the magnetic flux through the coil and to the number of loops in the coil. The minus sign means that the induced EMF opposes to the change of the magnetic flux. This law has been tested over and over again in the labs and at your homes… It has more applications that you might think of…

Faraday’s Law of EM Induction: Testing Moving conducting rod changes the effective area of the loop and consequently changes the magnetic flux. As the result the induced EMF will be created which will be indicated by the bulb!

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · B · · · · · · · · · · · · Va = 2cm/s Vb = 4cm/s Vc = 2cm/s Vd = 2cm/s A F · · · H · · · · · · · · · · · · · · · · E · · · · · · · · · · · · · · · · · G C D · · · · · · · · · · · · · · · · · · · · · · · · Each loop of conductive wire is moving to the right at the constant velocity listed. Each loop is either 25%, 50%, 75% or 100% inside the indicated B-field. Loop H is half of the size of the others. Rank in order in the induced current in each of the loops at the time and position indicated. Ve = 0cm/s Vf = 2cm/s Vg = 4cm/s Vh = 4cm/s

What best describes the magnitude of the induced currents in loop H and D? · · · · · · · · · · · · · · · H · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · D · · · · · · · · · · · · · · · · · · · · · · · · Each loop is moving to the right with: IH > ID IH < ID IH = ID Vd = 2cm/s Vh = 4cm/s

Enter question text... Enter answer text...

IH > ID IH < ID IH = ID · · · · · · · · · · · · · · · · · · · · Va = 2cm/s Vb = 4cm/s Vc = 2cm/s Vd = 2cm/s · · · · · · · · · · · · · · · H · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · D · · · · · · · · · · · · · · · · · · · · · · · · Ve = 0cm/s Vf = 2cm/s Vg = 4cm/s Vh = 4cm/s IH > ID IH < ID IH = ID

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · B Va = 2cm/s Vb = 4cm/s Vc = 2cm/s Vd = 2cm/s · · · · · · · · · · · · A F · · · H · · · · · · · · · · · · · · · · E · · · · · · · · · · · · · · · · · G C D · · · · · · · · · · · · · · · · · · · · · · · · Ve = 0cm/s Vf = 2cm/s Vg = 4cm/s Vh = 4cm/s Each loop of conductive wire is moving to the right at the constant velocity listed below. Each loop is either 25%, 50%, 75% or 100% inside the indicated B-field. Loop H is half of the size of the others. Rank in order in the induced current in each of the loops at the time and position indicated.

33. 41 A small, 1. 50-mm-diameter circular loop with R = 1 33.41 A small, 1.50-mm-diameter circular loop with R = 1.40×10−2 Ohms is at the center of a large 120-mm-diameter circular loop. Both loops lie in the same plane. The current in the outer loop changes from +1A to -1A in 9.00×10−2  sec  . What is the induced current in the inner loop? Which way does I induced go? What about after the 90 ms? Do we use A or a in this problem? Remember: Bcoilcenter = oI/(2R)

33.49 The figure shows a U-shaped conducting rail that is oriented vertically in a horizontal magnetic field. The rail has no electric resistance and does not move. A slide wire with mass m  and resistance R can slide up and down without friction while maintaining electrical contact with the rail. The slide wire is released from rest. Determine the value of a terminal velocity if   l = 21.0cm , m = 7.00 g, R  = 8.00×10−2 Ohms, and B   = 0.540 T   .

Some good sample problems: 34.51 34.52

Initially, in which direction does the current flow through the light bulb? To the right To the left There is no current.

Lenz’s Law (an application of a Faraday’s Law of EM induction) An induced current always flows in a direction that opposes the change that causes it! The magnet is pulled away from the ring!

Some Applications of Induced Currents: Generators:

Generators:

Some Applications of Induced Currents: Transformers

Some Applications of Induced Currents: Electronics -- Inductors A coil of wire is going to have a self-inductance. This self-inductance is defined as: As in a capacitor, L is dependent upon the geometry and construction of the coil of wire.

Or, as part of a circuit Going back to Faraday’s Law: and since: we get: Or, as part of a circuit

The three main topics covered in this chapter are: We observed that moving magnets create currents in loops of wire. We calculated that a long straight wire traveling (perpendicular) through a magnetic field has an induced voltage from the “top” to the “bottom” of the wire. We found that for loops of wire: + LC Circuits