T2KK Sensitivity of Resolving q23 Octant Degeneracy

Slides:



Advertisements
Similar presentations
MINOS+ Starts April 2013 for three years April
Advertisements

Sergio Palomares-Ruiz June 22, 2005 Super-NO A Based on O. Mena, SPR and S. Pascoli hep-ph/ a long-baseline neutrino experiment with two off-axis.
MINOS+ Sterile Neutrino Studies J.Thomas UCL J.Evans (UCL), A.Gavrilenko (W&M), M.Matthis (W&M)A.Sousa(Harvard) UCL.
Neutrino Oscillation Physics at a Neutrino Factory Rob Edgecock RAL/CERN-AB.
T2K neutrino experiment at JPARC Approved since 2003, first beam in April Priorities : 1. search for, and measurement of,   e appearance  sin.
Degeneracy and Correlation in Neutrino Oscillation Parameters Hisakazu Minakata Tokyo Metropolitan University Hisakazu Minakata Tokyo Metropolitan University.
Sinergia strategy meeting of Swiss neutrino groups Mark A. Rayner – Université de Genève 10 th July 2014, Bern Hyper-Kamiokande 1 – 2 km detector Hyper-Kamiokande.
F Axis Off Axis Physics Potential Cambridge Off-Axis Meeting 12 January 2004 Gary Feldman.
Performance of a Water Cherenkov Detector for e Appearance Shoei NAKAYAMA (ICRR, University of Tokyo) November 18-19, 2005 International Workshop on a.
CP-phase dependence of neutrino oscillation probability in matter 梅 (ume) 田 (da) 義 (yoshi) 章 (aki) with Lin Guey-Lin ( 林 貴林 ) National Chiao-Tung University.
Precision measurement of large mixing angles  12 and  23 Hisakazu Minakata Tokyo Metropolitan University.
Reactor & Accelerator Thanks to Bob McKeown for many of the slides.
Shoei NAKAYAMA (ICRR) for Super-Kamiokande Collaboration December 9, RCCN International Workshop Effect of solar terms to  23 determination in.
Summary of WG1 – Phenomenological issues Osamu Yasuda (TMU)
LBL neutrinos; looking forward to the future Hisakazu Minakata Tokyo Metropolitan University.
Precision measurement of mixing angles and CP Hisakazu Minakata PUC-Rio.
Present status of oscillation studies by atmospheric neutrino experiments ν μ → ν τ 2 flavor oscillations 3 flavor analysis Non-standard explanations Search.
Resolving neutrino parameter degeneracy 3rd International Workshop on a Far Detector in Korea for the J-PARC Neutrino Beam Sep. 30 and Oct , Univ.
The Earth Matter Effect in the T2KK Experiment Ken-ichi Senda Grad. Univ. for Adv. Studies.
Sterile Neutrino Oscillations and CP-Violation Implications for MiniBooNE NuFact’07 Okayama, Japan Georgia Karagiorgi, Columbia University August 10, 2007.
Dec. 13, 2001Yoshihisa OBAYASHI, Neutrino and Anti-Neutrino Cross Sections and CP Phase Measurement Yoshihisa OBAYASHI (KEK-IPNS) NuInt01,
The NOvA Experiment Ji Liu On behalf of the NOvA collaboration College of William and Mary APS April Meeting April 1, 2012.
Long Baseline Neutrino Beams and Large Detectors Nicholas P. Samios Istanbul, Turkey October 27, 2008.
If  13 is large, then what ? Hisakazu Minakata Tokyo Metropolitan University.
1 Neutrino Phenomenology Boris Kayser Scottish Summer School August 11,
Yoshihisa OBAYASHI, Oct. Neutrino Oscillation Experiment between JHF – Super-Kamiokande Yoshihisa OBAYASHI (Kamioka Observatory, ICRR)
Degeneracy and strategies of LBL Osamu Yasuda Tokyo Metropolitan University NuFACT04 workshop July 28, 2004 at Osaka Univ.
Optimization of a neutrino factory oscillation experiment 3 rd ISS Meeting Rutherford Appleton Laboratory, UK April 25-27, 2006 Walter Winter Institute.
Search for Electron Neutrino Appearance in MINOS Mhair Orchanian California Institute of Technology On behalf of the MINOS Collaboration DPF 2011 Meeting.
Getting the most in neutrino oscillation experiments Hisakazu Minakata Tokyo Metropolitan University.
Measuring Earth Matter Density and Testing MSW Hisakazu Minakata Tokyo Metropolitan University.
Road Map of Neutrino Physics in Japan Largely my personal view Don’t take too seriously K. Nakamura KEK NuFact04 July 30, 2004.
Optimization of a neutrino factory for non-standard neutrino interactions IDS plenary meeting RAL, United Kingdom January 16-17, 2008 Walter Winter Universität.
The quest for  13 : Parameter space and performance indicators Proton Driver General Meeting At Fermilab April 27, 2005 Walter Winter Institute for Advanced.
Measuring  13 with Reactors Stuart Freedman HEPAP July 24, 2003 Bethesda Reactor Detector 1Detector 2 d2d2 d1d1.
Takaaki Kajita ICRR, Univ. of Tokyo Nufact05, Frascati, June 2005 Based on reports at NNN05 Next generation of Nucleon decay and Neutrino detectors
2 July 2002 S. Kahn BNL Homestake Long Baseline1 A Super-Neutrino Beam from BNL to Homestake Steve Kahn For the BNL-Homestake Collaboration Presented at.
CP phase and mass hierarchy Ken-ichi Senda Graduate University for Advanced Studies (SOKENDAI) &KEK This talk is based on K. Hagiwara, N. Okamura, KS PLB.
The earth matter effect in T2KK Based on work with K. Hagiwara, N. Ken-ichi Senda Grad. Univ. for Adv. Studies &KEK.
Water Cherenkov detector - brief status report - Kenji Kaneyuki Research Center for Cosmic Neutrinos, ICRR, Univ. of Tokyo.
1 Study of physics impacts of putting a far detector in Korea with GLoBES - work in progress - Eun-Ju Jeon Seoul National University Nov. 18, 2005 International.
Hiroyuki Sekiya ICHEP2012 Jul 5 The Hyper-Kamiokande Experiment -Neutrino Physics Potentials- ICHEP2012 July Hiroyuki Sekiya ICRR,
Neutrino physics: The future Gabriela Barenboim TAU04.
Constraint on  13 from the Super- Kamiokande atmospheric neutrino data Kimihiro Okumura (ICRR) for the Super-Kamiokande collaboration December 9, 2004.
T2K Experiment Results & Prospects Alfons Weber University of Oxford & STFC/RAL For the T2K Collaboration.
New Results from MINOS Matthew Strait University of Minnesota for the MINOS collaboration Phenomenology 2010 Symposium 11 May 2010.
Proposal for the 2 nd Hyper-K detector in Korea Sunny Seo Seoul National University Mark Hartz (IPMU), Yoshinari Hayato (ICRR), Masaki Ishitsuka (TIT),
Institute for Advanced Study, Princeton
T2K : New physics results
Neutrino Oscillations and T2K
SOLAR ATMOSPHERE NEUTRINOS
L/E analysis of the atmospheric neutrino data from Super-Kamiokande
LBL Oscillation H. Minakata (Tokyo Metropolitan U.)
Neutrino Oscillation Physics with a Neutrino Factory
Neutrino oscillations with the T2K experiment
SOLAR ATMOSPHERE NEUTRINOS
Prospects of J-PARC Neutrino Program
Report of the T2KK Workshop
High g Li/B b-Beam Enrique Fernández-Martínez, MPI für Physik Munich
Parameter Degeneracy in Neutrino Oscillations (and how to solve it?)
Neutrino telescopes and possible solutions to ambiguities in neutrinos
T2KK sensitivity as a function of L and Dm2
T2KK (without reactor) solves 8-fold degeneracy
Naotoshi Okamura (YITP) NuFact05
Toward realistic evaluation of the T2KK physics potential
Impact of neutrino interaction uncertainties in T2K
Determination of Neutrino Mass Hierarchy at an Intermediate Baseline
Conventional Neutrino Beam Experiment : JHF – Super-Kamiokande
Probing non-standard neutrino physics at T2KK and neutrino factory
Will T2KK see new physics?
Presentation transcript:

T2KK Sensitivity of Resolving q23 Octant Degeneracy Shoei NAKAYAMA (ICRR, University of Tokyo), T. Kajita, H. Minakata, and H. Nunokawa July 13-14, 2006 2nd International Workshop on a Far Detector in Korea for the J-PARC Neutrino Beam @ SNU, Seoul, Korea

Motivation Planned LBL nm (nm) disappearance measurements can determine sin2 2q23 precisely, but cannot distinguish two possible solutions of sin2 q23 if q23 is not maximal. If the solar term and higher order terms in sin q13 are neglected, nm(nm)  ne(ne) probability depends on q23 through the form of sin2 2q13 x sin2 q23 . Then, ne (ne) appearance measurements give two degenerate solutions. (sin2 2q13 sin2 q23)1st = (sin2 2q13 sin2 q23)2nd Accelerator + Reactor could solve this degeneracy in some parameter region (especially at larger sin2 2q13). Can T2KK solve the q23 octant degeneracy without a help of reactor experiment ?

Strategy Detect the effect of the solar term using a far detector in Korea, which has a longer baseline. solar term : electron number density : reduced Jarlskog factor

Effect of the solar term Dm212 = 8.0 x 10-5 (eV2) Dm223 = 2.5 x 10-3 (eV2) sin2 q12 = 0.31 sin22q23 = 0.96 d = 3/4 p normal mass hierarchy Effect of the solar term sin2 q23 = 0.4, sin2 2q13 = 0.01 sin2 q23 = 0.6, sin2 2q13 = 0.0067 Kamioka 0.27Mton ( 4MW, 4yr n + 4yr n ) Korea 0.27Mton ( 4MW, 4yr n + 4yr n ) Number of signal events (BG not included) Solar term is negligibly small due to shorter baseline in Kamioka. Solar term can be seen in low En region in Korea.

Sensitivity study Assumption 2.5 o off-axis T2K 4MW beam 4 years n beam + 4 years n beam Kamioka : 0.27 Mton fid., L = 295 km, r = 2.3 g/cm3 Korea : 0.27 Mton fid., L = 1050 km, r = 2.8 g/cm3 Dm212 = 8.0 x 10-5 (eV2) |Dm223| = 2.5 x 10-3 (eV2) sin2 q12 = 0.31 Oscillation parameter space (unknown parameters) sin2 q23 : 0.35 ~ 0.65 [ 31 bins ] sin2 2q13 : 0.0015 ~ 0.15 [ 98 bins on log scale ] dCP : 0 ~ 2p [ 100 bins ] mass hierarchy : normal or inverted [2 bins ]  4 dimensional analysis using no external information on these parameters

Sensitivity study (cont’d) Binning e-like : 5 energy bins (0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-1.2 GeV) m-like : 20 energy bins (0.2-1.2 GeV) (Kamioka, Korea) x (n beam, n beam)  (5+20) x 4 = 100 bins in total Systematic errors e-like bins BG normalization 5 % BG spectrum shape 5 % (i-3)/2 (i=1…5 ene bin) signal normalization 5 % m-like bins BG normalization 20 % spectrum shape 5 % En(GeV)-0.8 / 0.8 both bins (7) spectrum distortion in Korea shape diff. btw Kam. and Korea  1s

c2 definition detector x beam systematic combination error term e-like bins m-like bins f ij : fractional change in the predicted event rate in the ith bin due to a variation of the parameter e j j : systematic error parameters, which are varied to minimize c2 for each chioce of the oscillation parameters “ Pull Approach ” G.L.Fogli et al. PRD66 (2002) 053010

An example q23 octant degeneracy solved !! input answer : sin2 2q13=0.01, d=0.75p sin2 q23=0.4, normal hierarchy Kamioka 0.54 Mt Kamioka 0.27 Mt + Korea 0.27 Mt sin2 2q13 sin2 2q13 dCP sin2 q23 q23 octant degeneracy solved !! intrinsic degeneracy sign-Dm2 degeneracy q23 octant degeneracy 90 % C.L. 99 % C.L.

Sensitivity to q23 octant sin2 q23=0.38 sin2 q23=0.44 sin2 q23=0.50 sin2 q23=0.56 sin2 q23=0.62 can determine q23 octant by > 3s 2~3s

Sensitivity to q23 octant (cont’d) sin2 2q13 sin2 q23 sin2 q23 can determine q23 octant for any d by > 3s 2~3s If sin2 q23<0.42 or >0.58 (sin2 2q23= 0.974), q23 octant can be determined by >2s even at very small sin2 2q13 .

Sensitivity comparison with T2K+Reactor d=0 assumed Sensitivity comparison with T2K+Reactor T2KK T2K-II + phase II reactor sin2 2q13 T2KK 2s (rough) > 3s 2~3s sin2 2q13 hep-ph/0601258 T2KK has better sensitivity at sin2 2q13 < 0.06~0.07 . sin2 q23

Sensitivity to mass hierarchy (for various q23) sin2 q23=0.38 sin2 q23=0.44 sin2 q23=0.50 sin2 q23=0.56 sin2 q23=0.62 can determine mass hierarchy by > 3s 2~3s weak dependence on sin2 q23

Sensitivity to leptonic CP violation (for various q23) sin2 q23=0.38 sin2 q23=0.44 sin2 q23=0.50 sin2 q23=0.56 sin2 q23=0.62 can find non-zero sin d by > 3s 2~3s weak dependence on sin2 q23

Summary T2KK (Kamioka 0.27 Mton fid. + Korea 0.27 Mton fid., 4 years n run + 4 years n run) can determine q23 octant by itself if sin2 2q23 <0.97 even for very small sin2 2q13 with realistic estimations of systematic errors.

Supplement

An example input answer : sin2 2q13=0.01, d=0.75p sin2 q23=0.4, normal hierarchy Kamioka 0.54 Mt Korea 0.54 Mt sin2 2q13 sin2 2q13 dCP sin2 q23 dCP sin2 q23 90 % C.L. 99 % C.L.