A New for Exoplanet Imaging Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France GAIA-ESF Workshop – November, 5th 2012, Torino Collaborations: J.-L. Beuzit, A.M. Lagrange, D. Mouillet, J. Rameau & P. Delorme (IPAG/Fr); S. Desidera, D. Mesa & R. Gratton (Oss. Padova/It); A. Boccaletti, R. Galicher, D. Rouan & P. Baudoz (LESIA/Fr); D. Apai (Uv. Arizona/US); M. Meyer, S. Quanz & M. Reggianni (ETHZ)/Swi); M. Bonnefoy, W. Brandner & C. Mordasini (MPIA/Ger); C. Moutou, A. Zurlo & A. Vigan (LAM/Fr); J. Girard, C. Dumas,, J. Milli, D. Mawet & M. Kasper (ESO); S. Udry, J. Hagelberg (Geneva/Swi)…
Outline A New Era for Exoplanet Imaging I- Introduction: Why Imaging? II- Techniques & Strategy III- Results: What can we learn? IV – A New Era: VLT/SPHERE GAIA-ESF Workshop – November, 5th 2012, Torino
I- Introduction Planet Hunting Techniques Radial Velocity. Indirect technique: Doppler shift (Targets: quiet stars; activity). Orbital & Physical properties: > M p.sin(i), P, e, a, ω & T 0 > Spin-Orbit Alignment > Architecture & Stability > exo-Earths & Habitable Zone Dumusque et al. 12; Triaud et al. 11. Statistics: more than 800 exoplanets > Occurrence down to Super-Earths > Planetary host: Fe/H & binarity De Sousa et al. 11; Udry & Santos 07
I- Introduction Planet Hunting Techniques Transit. (In)direct technique: 1 ary /2 ary eclipse. (Targets: quiet stars; activity; crowded fields). Orbital & Physical properties: > R * /R p, M p, P, a, i, T 0 > Planetary Interiors > Multiple: Architecture & Stability > Circumbinary planets Leger et al. 09; Doyle et al. 11; Balatha et al. 12. Transmission/emission spectroscopy > Composition (H20, CO, NaI, KI... Haze) > Vertical T-P structure, atmospheric circulation & evaporation Swain et al. 08; Knutson et al. 09; Desert et al. 12
I- Introduction Planet Hunting Techniques μ-lensing. Indirect technique: Unique Rel. Event (Targets: Crowded fields; probability). Orbital & Physical properties: > M p, M *, d, P, a (1-5 AU) > Super-Earths. Free-floating, wide orbit planets? Gould et al. 06; Cassan et al. 12 Astrometry. Indirect technique: Reflex motion (Targets: Nearby stars). Orbital & Physical properties: > M p, P, i, e, a, ω, T 0 (1-5 AU) Bean et al. 07, 08; Benedict et al. 02, 10 Muterspaugh et al. 10; Sozzetti et al. 10
I- Introduction Planet Hunting Techniques Direct Imaging. Direct technique: Planets photons (Targets: young & nearby stars). Orbital & Physical properties: > L, a, e, i, ω, T0 > Giant planets at wide orbits (>10 AU) > Multiple: Architecture & Stability > Planet – disk connection Chauvin et al. 05, 10; Lafrenière et al. 07 Soummer et al. 11; Vigan et al. 12. High-contrast spectroscopy > Non-strongly irradiated EGPs > Low-gravity, composition, non-LTE chemistry, cloud coverage... Janson et al. 10; Bonnefoy et al. 09, 12
Outline A New Era for Exoplanet Imaging I- Introduction: Why Imaging? II- Techniques & Strategy III- Results: What can we learn? IV – A New Era: VLT/SPHERE GAIA-ESF Workshop – November, 5th 2012, Torino
Detect/characterize something faint, angularly close to something bright. Imaging: an observing challenge! II- Strategy High image quality - High angular resolution, PSF Stability - Calibration of static aberrations Stellar Halo Brightness - Halo attenuation/PSF subtraction - Speckle noise Intrinsic companion faintness - Long overall observations; HIP95270 (Tuc-Hor) VLT/NaCo H, 10 by 10 (?)
Dedicated Instrumentation High Angular Resolution Space telescope 10m -telescopes + AO system VLT/NACO Gemini S/N KeckSubaru/HiCIAO HST LBT/Arizona II- Strategy
Adaptive optics (recover diffraction-limit resolution) Impressive evolution High Angular Resolution II- Strategy
The art of PSF subtraction 1 (i.e Field Rotation II- Strategy VLT/NaCo High Contrast at inner angles Main limitation (< ): Atmospheric & instrumental speckles Coronagraphy - Occulting and Lyot-pupil mask - 4QP Mask, Boccaletti et al new: PIAAC, ALC, APC & Vortex Differential Imaging - Polarimetric (PDI) - Spectral (SDI), Close et al Angular (ADI), Marois et al. 06 Post-processing tools - LOCI, Lafrenière et al ANDROMEDA, Mugnier et al KLIP/PCA, Soummer et al. 12
The art of PSF subtraction Field Rotation II- Strategy VLT/NaCo High Contrast at inner angles Main limitation (< ): Atmospheric & instrumental speckles Coronagraphy - Occulting and Lyot-pupil mask - 4QP Mask, Boccaletti et al new: PIAAC, ALC, APC & Vortex Differential Imaging - Polarimetric (PDI) - Spectral (SDI), Close et al Angular (ADI), Marois et al. 06 Post-processing tools - LOCI, Lafrenière et al ANDROMEDA, Mugnier et al KLIP/PCA, Soummer et al (i.e
Detection Performances Detection Limits: H-band Obs. Time ~10min Star, H = 5-6 (d = 30 pc) High Contrast at inner angles Coronagraphy or SAT-Imaging combined with ADI, SDI (or PDI) Improved performances inside the IWAs: Detection Limits: H-band; Tobs = min Star, H = 5-6 Down to ΔH = II- Strategy
Detection Performances Detection Limits: H-band Obs. Time ~10min Star, H = 5-6 (d = 30 pc) d = 30 pc, 10 Myr COND03 Evol. Models Baraffe et al. 03 Detection Limits: H-band; Tobs = min Star, H = 5-6 Down to ΔH = II- Strategy High Contrast at inner angles Coronagraphy or SAT-Imaging combined with ADI, SDI (or PDI) Improved performances inside the IWAs:
Optimized Samples II- Strategy Young, nearby stars Age < 200 Myr. Young, nearby associations Distance < 100 pc. access small sma,. enhanced sensitivity Spectral Types: AFGKM. AF: More massive EGPs?. M: favorable contrast V-band < 10.0 – AO-Full Performance limitation > All observed by GAIA NaCo Large Programs sample, preparatory mission to SPHERE (Chauvin et al. 10)
Outline A New Era for Exoplanet Imaging I- Introduction: Why Imaging? II- Techniques & Strategy III- Results: What can we learn? IV – A New Era: VLT/SPHERE GAIA-ESF Workshop – November, 5th 2012, Torino
Beta Pic Hr8799 Fomalhaut Wide orbit PMCs : - low mass KM stars - q = 0.02 – 0.2 or Δ > 200 AU Closer PMCs : - A4V-A5V massive primaries - q < ; Δ = AU - CS Disk signatures IV- Key results 2M1207DH TauAB PicSCR1845CHXR 73 GQ Lup1RXJS609CT ChaGJ 758 Ref: Chauvin et al. 04; Itoh et al. 05; Chauvin et al. 05; Biller et al. 05; Luhman et al. 06; Thalmann et al. 09; Lafrenière et al. 08; Neuhauser et al. 05; Schmidt et al. 09; Lagrange et al. 10; Kalas et al. 08; Marois et al. 08,10... Familys portrait
Outer Giant Planet Population Physics of Giant Planets Occurrence & Formation Architecture & Stability Statistical properties (occurrence, planetary host dependency, disk properties) Formation Theories: CA, GI or CF Astrometry & Disk/Planet Orbits, dynamical interactions, resonances & long-term evolution Photometry & Spectroscopy Atmosphere & physical properties IV- Key results
Physics of Giant Planets IV- Key results Companion nature? Planet Single-band photometry Stellar properties: d & age Evolutionary models (Luminosity - Mass). β Pictoris b, ΔJ = mag, pc,. Mass = 7 – 8 M jup (Hot-Startmodels) > However, uncertainties in the model predictions > Dependence: formation mechanisms, gas accretion shock & initial conditions VLT/NaCo ADI imaging Field Rotation Bonnefoy et al. 12 Marley et al. 07; Mordasini et al. 12
Physical properties IV- Key results Atmosphere Planets SED Stellar properties: d & age Synthetic-Grid of spectra Atmospheric properties β Pic b, T eff = K, log(g) = 4.0±0.5, FeH = 0.0±0.5, R = R Jup > dusty clouds (L β -type). Radiative transfert code. Dusty Cloud Formation/Sedim.. Mol. opacity / Non-eq Chem. Bonnefoy et al. 12
IV- Key results Nov 2003Oct mas N E Imaging Exoplanets revolution Lagrange et al. 09, 10 Bonnefoy et al. 10, Quanz et al. 10 Orbital Properties & Architecture Discovery: Nov 2003 ΔL = 7.7 mag, sep = mas Monitoring campaign: now Recovery: Oct VLT/NaCo ADI imaging L-band, β Pic b
IV- Key results N E Imaging Exoplanets revolution Chauvin et al. 12 Orbital Properties & Architecture Discovery: Nov ΔL = 7.7 mag, sep = mas Monitoring campaign: now Recovery: Oct Astrometric follow-up. VLT/NaCo monitoring
IV- Key results Constraining the orbit Orbital Properties & Architecture MCMC Orbital fitting β Pic b, P = yrs a = AU e < 0.17 i = deg = deg Chauvin et al. 12 N E
IV- Key results Constraining the orbit Orbital Properties & Architecture Planet – Disk connection. main disk, up to 20 (1000 AU), PA MD = deg. β Pic b PA β Pic b = o > β Pic b in the disks warp, Lagrange et al. 12 N E N E 2 Main disk Warp
In-situ Core Accretion does not work at > AU > Core or Disk fragmentation ? Dodson –Robinson et al. 09; Boley et al. 09 > Inner limit to the Core or Disk fragmentation? Dynamical evolution & stability > outward migration (corotation torque), planet scattering & resonances IV- Key results Crida et al. 09; Scharf & Menou 09 Formation & Evolution
Outline A New Era for Exoplanet Imaging I- Introduction: Why Imaging? II- Techniques & Strategy III- Results: What can we learn? IV – A New Era: VLT/SPHERE GAIA-ESF Workshop – November, 5th 2012, Torino
Upcoming instruments (mid-2013), GPI, Gemini Planet Finder (MacIntosh et al. 08) - Fast-high order adaptive optics system - Interferometric wave front sensing for static aberrations - NIR-IFU + Apodized pupil Lyot coronagraph VLT/SPHERE (Beuzit et al. 08) - SAXO, Extreme AO system (ITTM-DM and DTTS, PTTS) - NIR (YJHK): IRDIS (Dual imaging Spectrograph) and IFU 3D-spectroscopy - VIS: ZIMPOL (Imaging Polarimeter) - Coronagraphs: Classical Lyot, A4P and ALC - GTO of 260 nights; 200 devoted to survey 300 nearby stars V- A New Era
SPHERE concept
ZIMPOLIRDISIFS FoVSq 3.5 (instantaneous) Up to 4 radius (mosaic) Sq 11Sq 1.77 Spectral Range0.5 – 0.9 μm0.95 – 2.32 μm0.95 – 1.35/1.65 μm Spectral information BB, NB Slit spectro: 50/ / 30 Linear Polarisation Simultaneous on same detector, x 2 arms, exchangeable Simultaneous dual beam, exchangeable x Coronography: no /4Q / Lyot Rotation at Nasmyth: Pupil-stab. (instrument fixed wrt tel.) Field-stab (slit spectro, long DIT…) No rotation: minimize crosstalk…) AO sensitivity for high contrast: R=9.5 for NIR; R=9 for R; R=7.8 for whole VIS Separation with improved contrast: λ /D, ie mas in R, or 80 – 800 mas in H Mode switching : not VIS and NIR in same night V- A New Era SPHERE Instruments
V- A New Era Observing with SPHERE SPHERE Timeline, Fall 12, March 13PAE April 13Shipping May 13 July & Dec 13First Light & Commissioning phase 1, 2 & 3 March 14CfP 94, offered to the ESO community - All offered mode fully supported/documented, - Calibration & data reduction pipeline GTO ( 260 nights over yrs; nights/semester) > NIRSUR: SPHERE Giant Planet Search (200 nights) stars observed (Age < 1 Gyr; SpT: AFGKM; < pc) - Occurrence & properties of the giant planet population at wide orbits (> 10 AU)
V- A New Era Synergy with GAIA
V- A New Era Synergy with GAIA SPHERE ELT-PCS GAIA Mesa et al. 11 Kasper et al. 10 Lattanzi & Sozzetti 10
V- A New Era Synergy with GAIA GAIAs planetary systems About EGPs with GAIA for (d < 200 pc, V < 13) stars. Marginal overlap with SPHERE - favorable cases (very nearby), GAIA > planets orbital phase - Follow-up for Photometric/Spectroscopic characterization > but, will have to wait for ELT-(IFU & PCS) for systematic study Outer regions of GAIAs planetary systems - Could help to constrain GAIA astrometric solutions (long-periods) - Outer planets detection & characterization in synergy with GAIA > Architecture, Dynamical evolution, Stability & Formation To conclude: GAIA will provide a rich list of targets for Imaging surveys
Thank You! GAIA-ESF Workshop – November, 5th 2012, Torino
IV- Key results Mass determination & related uncertainties Cold start Hot start Planet photometry & spectroscopy Stellar properties: d & age Evolutionary model predictions. not-calibrated at young ages. Role of initial conditions Hot-start (Baraffe et al. 03; Burrows et al. 03) Cold start – Core Accretion (Marley et al. 07; Fortney et al. 08) Hot start Physical properties
IV- Key results Mass determination & related uncertainties Cold start Hot start Planet photometry & spectroscopy Stellar properties: d & age Evolutionary model predictions. not-calibrated at young ages. Role of initial conditions Hot-start (Baraffe et al. 03; Burrows et al. 03) Cold start – Core Accretion (Marley et al. 07; Fortney et al. 08) Hot start β Pic b 7-8 MJup Physical properties
IV- Key results N E Constraining the orbit (MCMC Orbital fitting) Orbital Properties & Architecture
IV- Key results 500 mas N E Disk-Planet connection Orbital Properties & Architecture Lagrange et al. (12) 2 Oct 2009 N E Imaging the inner disk of β Pictoris. the main disk, up to 20 (1000 AU), PA MD = deg. The warp-component, 0 – 5 (0 – 100 AU), PA W = deg. Where is the planet?
IV- Key results Nov 2003Oct mas N E Disk-Planet connection Orbital Properties & Architecture Oct 2009 N E 2 Imaging the inner disk of β Pictoris. the main disk, up to 20 (1000 AU), PA MD = deg. The warp-component, 0 – 5 (0 – 100 AU), PA W = deg. Where is the planet? Lagrange et al. (12) Warp Main disk
IV- Key results Nov 2003Oct mas N E Disk-Planet connection Orbital Properties & Architecture Oct 2009 N E 2 Imaging the inner disk of β Pictoris. the main disk, up to 20 (1000 AU), PA MD = deg. The warp-component, 0 – 5 (0 – 100 AU), PA W = deg. Planets position angle: PA b = deg > Probably not in the main disk, but in the warp… > Inner warped disk sculpted by the planet: (M b < 20 Mjup ) Lagrange et al. (12) Main disk Warp