Notes 42 Notes 46 ECE 6341 Spring 2016 Prof. David R. Jackson

Slides:



Advertisements
Similar presentations
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 41 ECE
Advertisements

ECE 6341 Spring 2014 Prof. David R. Jackson ECE Dept. Notes 36.
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 29 ECE
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 22 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 30 ECE
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 3 ECE
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 25 ECE 6340 Intermediate EM Waves 1.
Applied Electricity and Magnetism
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 13 ECE
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 17 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 35 ECE
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 34 ECE
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 33 ECE
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 24 ECE
1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.
1 Spring 2011 Notes 20 ECE 6345 Prof. David R. Jackson ECE Dept.
1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.
Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.
Spring 2015 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept. 1.
Prof. David R. Jackson Dept. of ECE Notes 2 ECE Microwave Engineering Fall 2015 Smith Charts 1.
Prof. David R. Jackson ECE Dept. Spring 2016 Notes 24 ECE
Prof. David R. Jackson ECE Dept. Spring 2016 Notes 42 ECE 6341 Notes 44 1.
Spring 2015 Notes 25 ECE 6345 Prof. David R. Jackson ECE Dept. 1.
Prof. David R. Jackson ECE Dept. Spring 2016 Notes 42 ECE 6341 Notes 43 1.
Spring 2015 Notes 32 ECE 6345 Prof. David R. Jackson ECE Dept. 1.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 15.
Notes 27 ECE 6340 Intermediate EM Waves Fall 2016
Applied Electricity and Magnetism
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 41.
Applied Electricity and Magnetism
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 20.
ECE 6345 Fall 2015 Prof. David R. Jackson ECE Dept. Notes 11.
Notes are from D. R. Wilton, Dept. of ECE
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 33.
Notes 12 ECE 6340 Intermediate EM Waves Fall 2016
Notes 29 ECE 6340 Intermediate EM Waves Fall 2016
Notes 17 ECE 6340 Intermediate EM Waves Fall 2016
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 39.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 15.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 42.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 35.
Notes 21 ECE 6340 Intermediate EM Waves Fall 2016
Microwave Engineering
Applied Electromagnetic Waves
Notes 48 Notes 42 ECE 6341 Spring 2016 Prof. David R. Jackson
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 38.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 40.
Applied Electromagnetic Waves
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 30.
Notes are from D. R. Wilton, Dept. of ECE
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 3.
Bessel Function Examples
Notes 10 ECE 3318 Applied Electricity and Magnetism Gauss’s Law I
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 14.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 32.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 4.
ECE 6382 Fall 2017 David R. Jackson Notes 15 Watson’s Lemma.
Notes 11 ECE 3318 Applied Electricity and Magnetism Gauss’s Law II
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 29.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 11.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 4.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 13.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 18.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 34.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 3.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 13.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 29.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 31.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 16.
Presentation transcript:

Notes 42 Notes 46 ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 42 Notes 46

Overview In this set of notes we examine the Array Scanning Method (ASM) for calculating the field of a single source near an infinite periodic structure.

ASM Geometry Consider an infinite 2D periodic array of metal patches excited by a single (nonperiodic) dipole source. Side view

This is an infinite periodic “phased array” problem. ASM Analysis We first consider an infinite 2D periodic array of metal patches excited by an infinite periodic array of dipole sources. This is an infinite periodic “phased array” problem.

ASM Analysis (cont.) We use the following identity: Picture for m = 1 Complex plane Hence we can say that

ASM Analysis (cont.) Denote Then

ASM Analysis (cont.)

ASM Analysis (cont.)

ASM Analysis (cont.) Next, we apply the same procedure to the phasing in the y direction:

ASM Analysis (cont.)

ASM Analysis (cont.) Conclusion:

ASM Analysis (cont.) After doing the method of moments (please see the Appendix), the result for the infinite phased array problem will be in the form Floquet expansion

ASM Analysis (cont.) Please see the next slide. This is the “unfolded” form (the integration limits are infinite).

ASM Analysis (cont.) Physical explanation of the path unfolding (illustrated for the kx0 integral): Fundamental Brillouin zone

Appendix In this appendix we use the method of moments to calculate

Appendix (cont.) Assume that unknown current on the (0,0) patch in the 2D array problem is of the following form: The EFIE is then Note that the “” superscript stands for “infinite periodic” (i.e., the fields due to the infinite periodic array of patch currents). The EFIE is enforced on the (0,0) patch; it is then automatically enforced on all patches.

Appendix (cont.) We have, using Galerkin’s method, Define We then have

Appendix (cont.) The (0,0) patch current amplitude is then We also have

Appendix (cont.) For the RHS term we have This follows from reciprocity for a single unit cell together with the periodic SDI method. The field from the periodic array of patch basis functions is

Appendix (cont.) Hence, we have where

Appendix (cont.) We then have, for the contribution due to the patches: For the contribution due to the dipoles:

Appendix (cont.) We have that (This is because we have the same physical dipole excitation for either set of phasing wavenumbers.) We then have

Appendix (cont.) We then use so that

Appendix (cont.) We therefore identify

Appendix (cont.) Note: When calculating the field in the original problem, there is no need to use the ASM to find the fields from the original (single) dipole; we can also find this directly using the (non-periodic) SDI method. We then have