Volume 101, Issue 1, Pages (July 2011)

Slides:



Advertisements
Similar presentations
Date of download: 5/31/2016 Copyright © ASME. All rights reserved. From: Collagen Structure and Mechanical Properties of the Human Sclera: Analysis for.
Advertisements

From: 3D Collagen Orientation Study of the Human Cornea Using X-ray Diffraction and Femtosecond Laser Technology Invest. Ophthalmol. Vis. Sci ;50(11):
From: Contour extracting networks in early extrastriate cortex
Actin Protofilament Orientation at the Erythrocyte Membrane
Volume 74, Issue 1, Pages (January 1998)
Volume 108, Issue 8, Pages (April 2015)
Structural Changes of Cross-Bridges on Transition from Isometric to Shortening State in Frog Skeletal Muscle  Naoto Yagi, Hiroyuki Iwamoto, Katsuaki Inoue 
The Y Cell Visual Pathway Implements a Demodulating Nonlinearity
Volume 101, Issue 2, Pages (July 2011)
Monitoring the Structural Behavior of Troponin and Myoplasmic Free Ca2+ Concentration during Twitch of Frog Skeletal Muscle  Tatsuhito Matsuo, Hiroyuki.
Volume 109, Issue 8, Pages (October 2015)
Toshiro Oda, Keiichi Namba, Yuichiro Maéda  Biophysical Journal 
Chiu Shuen Hui, Henry R. Besch, Keshore R. Bidasee  Biophysical Journal 
Heterogeneous Drying Stresses in Stratum Corneum
Two-Dimensional Substructure of MT Receptive Fields
Volume 95, Issue 6, Pages (September 2008)
Volume 107, Issue 11, Pages (December 2014)
Volume 105, Issue 2, Pages (July 2013)
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Marc Jendrny, Thijs J. Aartsma, Jürgen Köhler  Biophysical Journal 
Volume 96, Issue 9, Pages (May 2009)
Intact Telopeptides Enhance Interactions between Collagens
Rubén Díaz-Avalos, Donald L.D. Caspar  Biophysical Journal 
William J. Richardson, Jeffrey W. Holmes  Biophysical Journal 
Volume 98, Issue 1, Pages (January 2010)
Christopher B. Stanley, Tatiana Perevozchikova, Valerie Berthelier 
Volume 98, Issue 11, Pages (June 2010)
Volume 114, Issue 4, Pages (February 2018)
Volume 96, Issue 2, Pages (January 2009)
Shiori Toba, Hiroyuki Iwamoto, Shinji Kamimura, Kazuhiro Oiwa 
L. Makowski, J. Bardhan, D. Gore, D.J. Rodi, R.F. Fischetti 
Masataka Chiba, Makito Miyazaki, Shin’ichi Ishiwata 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
L. Kreplak, J. Doucet, P. Dumas, F. Briki  Biophysical Journal 
Volume 113, Issue 5, Pages (September 2017)
James J. Doutch, Andrew J. Quantock, Nancy C. Joyce, Keith M. Meek 
Naoto Yagi, Hiroyuki Iwamoto, Jun’ichi Wakayama, Katsuaki Inoue 
Histone Octamer Helical Tubes Suggest that an Internucleosomal Four-Helix Bundle Stabilizes the Chromatin Fiber  Timothy D. Frouws, Hugh-G. Patterton,
Cell Surface Topography Is a Regulator of Molecular Interactions during Chemokine- Induced Neutrophil Spreading  Elena. B. Lomakina, Graham Marsh, Richard E.
Janin Glaenzer, Martin F. Peter, Gavin H. Thomas, Gregor Hagelueken 
Volume 113, Issue 5, Pages (September 2017)
Volume 106, Issue 2, Pages (January 2014)
Volume 97, Issue 12, Pages (December 2009)
Volume 99, Issue 8, Pages (October 2010)
Volume 93, Issue 2, Pages (July 2007)
Validating Solution Ensembles from Molecular Dynamics Simulation by Wide-Angle X- ray Scattering Data  Po-chia Chen, Jochen S. Hub  Biophysical Journal 
Volume 107, Issue 11, Pages (December 2014)
Teuta Pilizota, Joshua W. Shaevitz  Biophysical Journal 
Hongqiang Ma, Jianquan Xu, Jingyi Jin, Yi Huang, Yang Liu 
Structural Flexibility of CaV1. 2 and CaV2
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Jayna B. Jones, Cyrus R. Safinya  Biophysical Journal 
Osmotic Pressure in a Bacterial Swarm
P. Müller-Buschbaum, R. Gebhardt, S.V. Roth, E. Metwalli, W. Doster 
Dynamic Shape Synthesis in Posterior Inferotemporal Cortex
Volume 108, Issue 10, Pages (May 2015)
Volume 76, Issue 4, Pages (April 1999)
Volume 102, Issue 6, Pages (March 2012)
Mikyung Han, Yuan Mei, Htet Khant, Steven J. Ludtke 
Bending and Puncturing the Influenza Lipid Envelope
John E. Pickard, Klaus Ley  Biophysical Journal 
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
The Role of Network Architecture in Collagen Mechanics
Volume 98, Issue 9, Pages (May 2010)
Small-Angle X-Ray Scattering of the Cholesterol Incorporation into Human ApoA1- POPC Discoidal Particles  Søren Roi Midtgaard, Martin Cramer Pedersen,
René B. Svensson, Tue Hassenkam, Colin A. Grant, S. Peter Magnusson 
Volume 98, Issue 11, Pages (June 2010)
Naoto Yagi, Hiroyuki Iwamoto, Jun’ichi Wakayama, Katsuaki Inoue 
Evidence of Cholesterol Accumulated in High Curvature Regions: Implication to the Curvature Elastic Energy for Lipid Mixtures  Wangchen Wang, Lin Yang,
Volume 97, Issue 2, Pages (July 2009)
Presentation transcript:

Volume 101, Issue 1, Pages 33-42 (July 2011) Quantification of Collagen Organization in the Peripheral Human Cornea at Micron- Scale Resolution  Craig Boote, Christina S. Kamma-Lorger, Sally Hayes, Jonathan Harris, Manfred Burghammer, Jennifer Hiller, Nicholas J. Terrill, Keith M. Meek  Biophysical Journal  Volume 101, Issue 1, Pages 33-42 (July 2011) DOI: 10.1016/j.bpj.2011.05.029 Copyright © 2011 Biophysical Society Terms and Conditions

Figure 1 (A) Contour map of aligned collagen x-ray scatter (a.u.) from a right human cornea. Superior, s, and nasal, n, positions are marked. Broken line denotes the limbus. Note the skewed diamond shape of the scatter contours, which displays mirror symmetry between the left and right eyes. (B) Proposed model of collagen fibril arrangement to explain the shape of the aligned scatter contours. The peripheral, oblique cornea is reinforced by chords of anchoring collagen of scleral origin. Figure modified from Boote et al. (13). Biophysical Journal 2011 101, 33-42DOI: (10.1016/j.bpj.2011.05.029) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 2 Previous models to explain the integration of corneal and limbal fibrils, based on data from (A–E) x-ray scattering and (F) circular polarization biomicroscopy. (A) The orthogonal fibrils change direction to form the limbal annulus. (B) A discrete population of straight, tangential scleral fibrils forms the pseudoannulus. (C) Discrete, curved scleral fibrils form the limbal annulus. (D) The limbal annulus is a separate population of circular fibrils. (E) Linear belts of collagen (solid lines) run from limbus to limbus, leading to a two-dimensional projection view (broken lines) characterized by central orthogonal and peripheral annular fibrils. (F) Confocal elliptic/hyperbolic model in which fibrils loop around nasal and temporal foci. Redrawn from (A–D) Meek and Boote (21), (E) Pinsky et al. (23), and (F) Misson (24). Biophysical Journal 2011 101, 33-42DOI: (10.1016/j.bpj.2011.05.029) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 3 (A and B) Scan lines on the two left human corneoscleral buttons used for microfocus WAXS. Solid line: coarse sampling (0.5 mm); broken line: fine sampling (0.05 mm). Shaded region denotes the limbus. (C) WAXS pattern from the limbal region of Cornea 1, showing the collagen intermolecular WAXS reflection centered at 1.6 nm. (D) Normalized x-ray scatter from fibrillar collagen as a function of rotation angle. Each of the 256 values in the distribution is extracted via a radial integration of the (background-subtracted) collagen WAXS peak. The clear region corresponds to preferentially aligned collagen, whereas the shaded region corresponds to isotropic collagen. Biophysical Journal 2011 101, 33-42DOI: (10.1016/j.bpj.2011.05.029) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 4 (A) Scan lines on the two right human corneoscleral buttons used for SAXS. The sampling interval was 0.5 mm and the shaded region denotes the limbus. (B) SAXS pattern from the center of Cornea 3. (C) Vertical intensity profile, I(K), through pattern shown in B. The data is folded about the pattern center. A background function, B(K), is subtracted. The collagen interference function peak arising from the short-range lateral order of the stromal fibrils can be clearly seen. The region bounded by the rectangular box is shown expanded in D. (D) A fibril transform function, F(K), is fitted to the background-subtracted data and the peak position (solid arrow) calibrated to determine the average collagen fibril diameter. The sharp third order collagen meridional peak (empty arrow) is visible merged into the equatorial pattern, and may be ignored in fitting the fibril transform. Biophysical Journal 2011 101, 33-42DOI: (10.1016/j.bpj.2011.05.029) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 5 (A, C, E, and G) Preferential angle of (centrally) i-s and n-t aligned fibril populations, as a function of distance from corneal center for Cornea 1. (B, D, F, and H) Peak x-ray scatter for aligned and isotropic fibril populations. The corneal, C, and limbal, L, regions are indicated. Insets in C depict line plots representing the local direction of n-t (black line) and i-s (gray line) populations at four selected points along diagonal scan 2. Biophysical Journal 2011 101, 33-42DOI: (10.1016/j.bpj.2011.05.029) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 6 (A, C, E, and G) Preferential angle of aligned fibril populations for Cornea 2. (B, D, F, and H) Peak x-ray scatter for aligned and isotropic fibril populations. The corneal, C, and limbal, L, regions are indicated. Biophysical Journal 2011 101, 33-42DOI: (10.1016/j.bpj.2011.05.029) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 7 Average collagen fibril diameter as a function of distance from the corneal center for (A) Cornea 3 and (B) Cornea 4. Biophysical Journal 2011 101, 33-42DOI: (10.1016/j.bpj.2011.05.029) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 8 Schematic showing possible integration of the corneal, c, and limbal, l, collagen fibrils in the right human eye, based on the current x-ray data (superonasal quadrant shown). Centrally orthogonal fibrils change direction in the peripheral cornea to fuse with the tangential fibrils of the highly reinforced limbal annulus. Chords of larger anchoring fibrils, originating in the sclera, s, cross the oblique peripheral cornea. Biophysical Journal 2011 101, 33-42DOI: (10.1016/j.bpj.2011.05.029) Copyright © 2011 Biophysical Society Terms and Conditions