Accumulation Gate Capacitance of MOS Devices with Ultra-thin High-K Gate Dielectrics: Modeling and Characterization Ahmad Ehteshamul Islam and Anisul Haque.

Slides:



Advertisements
Similar presentations
Agenda Semiconductor materials and their properties PN-junction diodes
Advertisements

Wigner approach to a two-band electron-hole semi-classical model n. 1 di 22 Graz June 2006 Wigner approach to a two-band electron-hole semi-classical model.
PIDS: Poster Session 2002 ITRS Changes and 2003 ITRS Key Issues ITRS Open Meeting Dec. 5, 2002 Tokyo.
ESD Evaluation of the Emerging MuGFET Technology
6.772SMA Compound Semiconductors Lecture 5 - Quantum effects in heterostructures, I - Outline Quantum mechanics applied to heterostructures Basic.
Savas Kaya and Ahmad Al-Ahmadi School of EE&CS Russ College of Eng & Tech Search for Optimum and Scalable COSMOS.
MOS – AK Montreux 18/09/06 Institut dÉlectronique du Sud Advances in 1/f noise modeling: 1/f gate tunneling current noise model of ultrathin Oxide MOSFETs.
by Alexander Glavtchev
OXIDE AND INTERFACE TRAPPED CHARGES, OXIDE THICKNESS
Contact Modeling and Analysis of InAs HEMT Seung Hyun Park, Mehdi Salmani-Jelodar, Hong-Hyun Park, Sebastian Steiger, Michael Povoltsky, Tillmann Kubis,
Electrical Engineering 2
R. van Langevelde, A.J. Scholten Philips Research, The Netherlands
Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.
8 th RD50 Workshop Prague June Università degli Studi Università degli Studi di Perugia di Perugia 1 Annealing effects on p + n junction 4H-SiC.
Comparison among modeling approaches for gate current computation in advanced gate stacks ARCES: N.Barin, C.Fiegna, E.Sangiorgi BU: P.A.Childs FMNT-CNRS:
Derek Wright Monday, March 7th, 2005
University of Toronto ECE530 Analog Electronics Review of MOSFET Device Modeling Lecture 2 # 1 Review of MOSFET Device Modeling.
Comparison of Non-Equilibrium Green’s Function and Quantum-Corrected Monte Carlo Approaches in Nano MOS Simulation H. Tsuchiya A. Svizhenko M. P. Anantram.
COMPACT MODEL FOR LONG-CHANNEL SYMMETRIC DOPED DG COMPACT MODEL FOR LONG-CHANNEL SYMMETRIC DOPED DG Antonio Cerdeira 1, Oana Moldovan 2, Benjamín Iñiguez.
Spring 2007EE130 Lecture 33, Slide 1 Lecture #33 OUTLINE The MOS Capacitor: C-V examples Impact of oxide charges Reading: Chapter 18.1, 18.2.
VLSI Design CMOS Transistor Theory. EE 447 VLSI Design 3: CMOS Transistor Theory2 Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V.
Lecture 11: MOS Transistor
Spring 2007EE130 Lecture 34, Slide 1 Lecture #34 OUTLINE The MOS Capacitor: MOS non-idealities (cont.) V T adjustment Reading: Chapter 18.3.
Lecture 15 OUTLINE MOSFET structure & operation (qualitative)
EE415 VLSI Design The Devices: MOS Transistor [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
Lecture 10: PN Junction & MOS Capacitors
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004 from CMOS VLSI Design A Circuits and Systems.
MOS-AK ESSCIRC Leuven (Belgium) On the Analysis of Parasitic Quantum Effects in Classical MOS Circuits Frank Felgenhauer, Simon Fabel, Wolfgang.
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
Lecture 2: CMOS Transistor Theory
VLSI design Lecture 1: MOS Transistor Theory. CMOS VLSI Design3: CMOS Transistor TheorySlide 2 Outline  Introduction  MOS Capacitor  nMOS I-V Characteristics.
EE105 Fall 2007Lecture 16, Slide 1Prof. Liu, UC Berkeley Lecture 16 OUTLINE MOS capacitor (cont’d) – Effect of channel-to-body bias – Small-signal capacitance.
Optional Reading: Pierret 4; Hu 3
MOS Capacitors MOS capacitors are the basic building blocks of CMOS transistors MOS capacitors distill the basic physics of MOS transistors MOS capacitors.
Reliability of ZrO 2 films grown by atomic layer deposition D. Caputo, F. Irrera, S. Salerno Rome Univ. “La Sapienza”, Dept. Electronic Eng. via Eudossiana.
Norhayati Soin 06 KEEE 4426 WEEK 3/2 13/01/2006 KEEE 4426 VLSI WEEK 3 CHAPTER 1 MOS Capacitors (PART 2) CHAPTER 1.
Investigation of Performance Limits of Germanium DG-MOSFET Tony Low 1, Y. T. Hou 1, M. F. Li 1,2, Chunxiang Zhu 1, Albert Chin 3, G. Samudra 1, L. Chan.
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 30 Metal-Semiconductor Contacts Real semiconductor devices and ICs always contain.
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
ULIS 2003-Udine Italy Evolution of Si-SiO 2 interface trap density under electrical stress in MOSFETs with ultrathin oxides F. Rahmoune and D. Bauza Institut.
1 S.K. Dixit 1, 2, X.J. Zhou 3, R.D. Schrimpf 3, D.M. Fleetwood 3,4, S.T. Pantelides 4, G. Bersuker 5, R. Choi 5, and L.C. Feldman 1, 2, 4 1 Interdisciplinary.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – Poly-Si gate depletion effect – V T adjustment Reading: Pierret ; Hu.
Lecture 23 OUTLINE The MOSFET (cont’d) Drain-induced effects Source/drain structure CMOS technology Reading: Pierret 19.1,19.2; Hu 6.10, 7.3 Optional Reading:
UNIT I MOS TRANSISTOR THEORY AND PROCESS TECHNOLOGY
Development of an analytical mobility model for the simulation of ultra thin SOI MOSFETs. M.Alessandrini, *D.Esseni, C.Fiegna Department of Engineering.
IEE5328 Nanodevice Transport Theory
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – V T adjustment – Poly-Si gate depletion effect Reading: Pierret ; Hu.
Novel Metal-Oxide-Semiconductor Device
F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band.
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2007.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP First Time User Guide to MOSCAP*
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 38 MOS capacitor Threshold Voltage Inversion: at V > V T (for NMOS), many electrons.
Metal-oxide-semiconductor field-effect transistors (MOSFETs) allow high density and low power dissipation. To reduce system cost and increase portability,
June MURI Review1 Total Dose Response of HfO 2 /Dy 2 O 3 on Ge and Hf 0.6 Si 0.2 ON 0.2 on Si MOS Capacitors D. K. Chen, R. D. Schrimpf, D. M.
MOS CAPACITOR Department of Materials Science & Engineering
EE130/230A Discussion 10 Peng Zheng.
Damu, 2008EGE535 Fall 08, Lecture 21 EGE535 Low Power VLSI Design Lecture #2 MOSFET Basics.
Extraction of Doping Profile in Substrate of MNOS capacitor Using Fast Voltage Ramp Deep Depletion C-V method.
L ECE 4243/6243 Fall 2016 UConn F. Jain Notes Chapter L11 (page ). FET Operation slides Scaling Laws of FETs (slides 9-22)
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lower Limits To Specific Contact Resistivity
Revision CHAPTER 6.
Contact Resistance Modeling in HEMT Devices
Optional Reading: Pierret 4; Hu 3
MOS Capacitor Basics Metal SiO2
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Mechanical Stress Effect on Gate Tunneling Leakage of Ge MOS Capacitor
Junctionless Device.
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Ionic liquid gating of VO2 with a hBN interfacial barrier
Presentation transcript:

Accumulation Gate Capacitance of MOS Devices with Ultra-thin High-K Gate Dielectrics: Modeling and Characterization Ahmad Ehteshamul Islam and Anisul Haque Dept. of EEE, BUET

Outline Importance of Accumulation region modeling Modeling CV and Verification Snapshot of the proposed characterization technique (EOT Extraction) Origin of the proposed technique Wave-function penetration (WP) effect Comparison with other QMCV Future work Summary

Importance of Accumulation region modeling We can model both MOSCAP and MOSFET Poly-Si effect on Capacitance is small s(acc) < s(inv) for a particular carrier density QM effect on CV is lower in accumulation (for same carrier) As poly doping is high, this effect is further reduced So, C G = C ox || C Sem There is no depletion capacitance Helps in EOT extraction CGCG C ox C acc CGCG C ox C inv C dep C poly

Modeling CV and Verification Self-consistent Schrödinger-Poisson Solution Schrödinger Equation: Greens function formalism with Transmission line analogy T di = 42 Å (TEM Image) ε di = 14

Snapshot of the EOT Extraction Technique Previous Techniques Semi-classical technique (Sheet charge model) McNutt and C. T. Sah, JAP 46, pp. 3909, 1975 J. Maserjian et. al., SSE 17, pp. 335, 1974 S. Kar, TED 50(10), pp. 2112, Oct QM Simulation With or without (EOT underestimation) wave function penetration (WP) Proposed Technique Simple as Semi-classical techniques Takes QM (including WP)

Origin of Proposed Technique Device Information: Wilk, Wallace, JAP 89(10), pp. 5243

Origin of Proposed Technique Region 2 and 3 (QM) Region 1: Semi-classical Ref.: R.F. Pierret Y. Tsividis Region 1 Corrupted by Interface charge Pretty small region Region 3 Varies from device to device

Origin of Proposed Technique Processing in Region 2 Equation to be used X-axis Intercept gives, C ox Region 1 Region 3

Wave Function Penetration Effect 1.The technique is almost independent of barrier height S. Mudanai et. al., EDL 22(3), pp. 145, Mar ~2 A shift for 1nm Device

Wave Function Penetration Effect 2.Takes into account WP Effect for electron is less than that for hole A. Haque et. al., TED 49(9), pp. 1580, Sep Effective mass: Electron: 0.98, 0.19 Hole: 0.5, 0.16 [Sze] 0.29, 0.2 [Takagi, TED 46(7)] WP Effect lower Compared our results with QM simlulator results: J. J. Chambers et. al., JAP, 90(2), pp. 918 Our extracted EOT Matches with PMOS device (electron in accumulation) Greater than referred value for NMOS (as EOT underestimated in reference, neglecting WP effect)

Using C di, we can extract C acc a Extracted C acc vs. Φ s

Comparison with QUASI (A. Ghetti) and UTQUANT QUASI UTQUANT (Compact Model) F. Li, et. al., TED 52(6), pp. 1148, June Considers WP in High-K same as that in SiO 2. Neglects increased penetration in High-K So this papers extraction of EOT (for High-K) < Our extraction Whereas, extraction for SiO 2 is almost identical

Summary A new EOT extraction technique proposed Simpler as the semi-classical techniques Takes into account QM effects Technique compared with different QMCV Extracted C acc - Φ s shows expected behavior Physical Origin of C acc -Φ s relationship (To be published)