Technical University Munich

Slides:



Advertisements
Similar presentations
Modern Theory of Nuclear Structure, Exotic Excitations and Neutrino-Nucleus Reactions N. Paar Physics Department Faculty of Science University of Zagreb.
Advertisements

Spectroscopy at the Particle Threshold H. Lenske 1.
RIKEN, March 2006: Mean field theories and beyond Peter Ring RIKEN, March 20, 2006 Technical University Munich RIKEN-06 Beyond Relativistic.
CEA DSM Irfu 14 Oct Benoît Avez - [Pairing vibrations with TDHFB] - ESNT Workshop1 Pairing vibrations study in the Time-Dependent Hartree-Fock Bogoliubov.
Isospin dependence and effective forces of the Relativistic Mean Field Model Georgios A. Lalazissis Aristotle University of Thessaloniki, Greece Georgios.
Thessaloniki ΘΕΣΣΑΛΟΝΙΚΗ Solúň Salonico Salonique Salonik 315 B.C.
John Daoutidis October 5 th 2009 Technical University Munich Title Continuum Relativistic Random Phase Approximation in Spherical Nuclei.
International Workshop on Fundamental Symmetries: From Nuclei and Neutrinos to the Universe ECT*, Trento, June 2007 Charged-Current Neutrino-Nucleus.
XV Nuclear Physics Workshop Kazimierz 2008: "75 years of nuclear fission" Sept. 25, ISTANBUL-06 Kazimierz Dolny, Sept. 25, 2008 Technical.
Nucleon Optical Potential in Brueckner Theory Wasi Haider Department of Physics, AMU, Aligarh, India. E Mail:
Equation of State of Neutron-Rich Matter in the Relativistic Mean-Field Approach Farrukh J. Fattoyev My TAMUC collaborators: B.-A. Li, W. G. Newton My.
M. Girod, F.Chappert, CEA Bruyères-le-Châtel Neutron Matter and Binding Energies with a New Gogny Force.
Isospin effect in asymmetric nuclear matter (with QHD II model) Kie sang JEONG.
DPG Tagung, Breathing mode in an improved transport model T. Gaitanos, A.B. Larionov, H. Lenske, U. Mosel Introduction Improved relativistic transport.
AUJOURD’ HUI…..et…. DEMAIN Keep contact with experimentalists, work together Beyond mean-field, but via Particle- Vibration Coupling.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
Effects of self-consistence violations in HF based RPA calculations for giant resonances Shalom Shlomo Texas A&M University.
Alex Brown UNEDF Feb Strategies for extracting optimal effective Hamiltonians for CI and Skyrme EDF applications.
XII. International Workshop Maria and Pierre Curie, Kazimierz Dolny, Covariant density functional theory for collective excitations in.
Modern description of nuclei far from stability
The calculation of Fermi transitions allows a microscopic estimation (Fig. 3) of the isospin mixing amount in the parent ground state, defined as the probability.
Giant Resonances - Some Challenges from Recent Experiments
N. Paar 1,2 1 Department of Physics, University of Basel, Switzerland 2 Department of Physics, Faculty of Science, University of Zagreb, Croatia International.
Low-lying dipole strength in unstable nuclei. References: N. Ryezayeva et al., Phys. Rev. Lett. 89 (2002) P. Adrich, A. Kimkiewicz et al., Phys.Rev.
Pygmy Dipole Resonance in 64Fe
Constraints on symmetry energy from different collective excitations G. Colò NUSYM Krakow July 2 nd, 2015.
Relativistic mean field and RPA with negative energy states for finite nuclei Akihiro Haga, Hiroshi Toki, Setsuo Tamenaga, Yoko Ogawa, Research Center.
Trento, Giessen-BUU: recent progress T. Gaitanos (JLU-Giessen) Model outline Relativistic transport (GiBUU) (briefly) The transport Eq. in relativistic.
Role of vacuum in relativistic nuclear model A. Haga 1, H. Toki 2, S. Tamenaga 2 and Y. Horikawa 3 1. Nagoya Institute of Technology, Japan 2. RCNP Osaka.
Nuclear Collective Excitation in a Femi-Liquid Model Bao-Xi SUN Beijing University of Technology KITPC, Beijing.
Nuclear Symmetry Energy from QCD Sum Rule The 5 th APFB Problem in Physics, August 25, 2011 Kie Sang JEONG Su Houng LEE (Theoretical Nuclear and Hadron.
Nuclear Structure SnSn P,n p n (  )‏ ( ,Xn)‏ M1E1 p,nn X λ ?E1 ExEx  Study of the pygmy dipole resonance as a function of deformation.
ExperimentSpokesmanGoalRunning time Thesis? Scissors ModeTonchevAnalyze Scissors Mode excitations in actinide nuclei Pgymy DipoleTonchevAnalyze evolution.
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
First Gogny conference, TGCC December 2015 DAM, DIF, S. Péru QRPA with the Gogny force applied to spherical and deformed nuclei M. Dupuis, S. Goriely,
Giant and Pygmy Resonance in Relativistic Approach The Sixth China-Japan Joint Nuclear Physics May 16-20, 2006 Shanghai Zhongyu Ma China Institute of Atomic.
Lectures in Milano University Hiroyuki Sagawa, Univeristy of Aizu March 6,12,13, Pairing correlations in Nuclei 2. Giant Resonances and Nuclear.
F. C HAPPERT N. P ILLET, M. G IROD AND J.-F. B ERGER CEA, DAM, DIF THE D2 GOGNY INTERACTION F. C HAPPERT ET AL., P HYS. R EV. C 91, (2015)
Time dependent GCM+GOA method applied to the fission process ESNT janvier / 316 H. Goutte, J.-F. Berger, D. Gogny CEA/DAM Ile de France.
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Continuum quasiparticle linear response theory using the Skyrme functional for exotic nuclei University of Jyväskylä Kazuhito Mizuyama, Niigata University,
Pairing Correlation in neutron-rich nuclei
Description of nuclear structures in light nuclei with Brueckner-AMD
Probing the neutron skin thickness in collective modes of excitation
Nuclear Structure Tools for Continuum Spectroscopy
The Isovector Giant Quadrupole Resonance & Nuclear Matter
Structure and dynamics from the time-dependent Hartree-Fock model
Low energy nuclear collective modes and excitations
BE and charge radii well described (mostly isoscalar)
Self-consistent theory of stellar electron capture rates
Gogny’s pairing forces in covariant density functional theory
Deformed relativistic Hartree Bogoliubov model in a Woods-Saxon basis
Workshop on Nuclear Structure and Astrophysical Applications
Role of Pions in Nuclei and Experimental Characteristics
Relativistic mean field theory and chiral symmetry for finite nuclei
GCM calculations based on covariant density functional theory
Nuclear excitations in relativistic nuclear models
AUJOURD’ HUI…..et…. DEMAIN
Daisuke ABE Department of Physics, University of Tokyo
Pions in nuclei and tensor force
Parametrisation of Binding Energies
Variational Calculation for the Equation of State
Kazuo MUTO Tokyo Institute of Technology
A self-consistent Skyrme RPA approach
Constraining the Nuclear Equation of State via Nuclear Structure observables 曹李刚 中科院近物所 第十四届全国核结构大会,湖州,
Department of Physics, Sichuan University
Magnetic dipole excitation and its sum rule for valence nucleon pair
Effects of the φ-meson on the hyperon production in the hyperon star
Presentation transcript:

Technical University Munich Isovector properties of covariant DFT's and their influence on static and dynamic properties of neutron distributions ISTANBUL-06 Trento ECT*, Aug. 7, 2009 Peter Ring Technical University Munich 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Content Density dependence in the isovector channel of covariant density functionals Neutron skin in various models Connection to ab-initio calculations ? Neutron skin and collective phenomena Conclusions The basic goal is to find an optimal functional, which describes the essential facts of nuclear structure properly and to deduce from it the neutron skin 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Density functional theory Density functional theory in nuclei: Density functional theory Slater determinant density matrix Mean field: Eigenfunctions: Interaction: Extensions: Pairing correlations, Covariance Relativistic Hartree Bogoliubov (RHB) 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Walecka model - the basis is an effective Lagrangian with all relativistic symmetries - it is used in a mean field concept (Hartree-level) - with the no-sea approximation (J,T)=(0+,0) (J,T)=(1-,0) (J,T)=(1-,1) sigma-meson: attractive scalar field omega-meson: short-range repulsive rho-meson: isovector field 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Effective density dependence: The basic idea comes from ab initio calculations density dependent coupling constants include Brueckner correlations and threebody forces non-linear meson coupling NL1,NL3,… Manakos and Mannel, Z.Phys. 330, 223 (1988) Bürvenich, Madland, Maruhn, Reinhard, PRC 65, 044308 (2002): PC-F1 Niksic, Vretenar, P.R., PRC 78, 034318 (2008): DD-PC1 Point-coupling models with derivative terms: ρ σ ω gσ(ρ) gω(ρ) gρ(ρ) gσ(ρ) gω(ρ) gρ(ρ) + gradient term Typel, Wolter, NPA 656, 331 (1999) Niksic, Vretenar, Finelli, P.R., PRC 66, 024306 (2002): DD-ME1 Lalazissis, Niksic, Vretenar, P.R., PRC 78, 034318 (2008): DD-ME2 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009 ρ σ ω

Neutron skins: Na NL3 most of the non-linear models (NL1, NL3, …) overestimate the neutron skins 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

2 MeV/fm3 < p0 < 4 MeV/fm3 Symmetry energy Symmetry energy saturation density empirical values: 30 MeV £ a4 £ 34 MeV 2 MeV/fm3 < p0 < 4 MeV/fm3 -200 MeV < DK0 < -50 MeV 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Isovector Giant Dipole Resonance: IV-GDR the IVGDR represents one of the sources of experimental informations on the nuclear matter symmetry energy constraining the nuclear matter symmetry energy the position of IVGDR is reproduced if 32 MeV £ a4 £ 36 MeV 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Ground state properties of finite nuclei DD-ME1 Ground state properties of finite nuclei Binding energies, charge isotope shifts, and quadrupole Deformations of Gd, Dy, and Er isotopes. Charge isotope shifts in even-A Pb isotopes. 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

rms-deviations: masses: Dm = 900 keV radii: Dr = 0.015 fm Masses: 900 keV Lalazissis, Niksic, Vretenar, P.R., PRC 71, 024312 (2005) 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Relativistic (Q)RPA calculations of giant resonances Sn isotopes: DD-ME2 effective interaction + Gogny pairing Isovector dipole response protons neutrons Isoscalar monopole response 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Isoscalar Giant Monopole Resonances in Sn nuclei R(Q)RPA analysis of compression modes and isovector giant dipole resonances: The compressibility and symmetry energy of nuclear matter: Phys. Rev. C 68, 024310 (2003) 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

U. Garg: Monopole-resonance and compressibility U. Garg et al, Proceedings INPC2007), Tokyo, June 3-8, 2007 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

comparison with ab initio calculations: DD-ME2 (Lalazissis et al) ab initio (Baldo et al) neutron matter DD-ME2 (Lalazissis et al) nuclear matter see talk of X. Vinas 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Fit to ab-initio results point coupling model is fitted to microscopic nuclear matter: av = 16,04 av = 16.06 av = 16,08 av = 16,10 av = 16,12 av = 16,14 av = 16.16 ρsat = 0.152 fm-3 m* = 0.58m Knm = 230 MeV DD-PC1 A. Akmal, V.R. Pandharipande, and D.G. Ravenhall, PRC. 58, 1804 (1998). 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

results for the neutron skin in 208Pb: rn-rp nonlinear meson coupling NL1 0.32 fm NL3 0.28 fm density dependent meson exchange DD-ME1 0.20 fm DD-ME2 0.19 fm point coupling models PC-F1 0.27 fm DD-PC1 0.20 fm 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

can we fit directly the potentials ? Microscopic can we fit directly the potentials ? Y. Akaishi (KEK) T. Otsuka (Tokyo) S. Hirose M. Serra† M. Serra, T. Otsuka, Y. Akaishi, P. R., and S. Hirose, Prog.Theor.Phys. 113, 1009 (2005) S. Hirose, M. Serra, P. R, T. Otsuka, and Y. Akaishi, PRC 75, 024301 (2007) 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

G-Matrix representation in r-space: Tamagaki + Takatsuka potential various densities: kf = 1.0 fm-1 kf = 1.4 fm-1 kf = 1.8 fm-1 the most important contributions to nuclear binding come from 1E and 3E (tensor force) S. Hirose, M. Serra, P. R, T. Otsuka, and Y. Akaishi, PRC 75, 024301 (2007) 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

OME-potentials are fitted for r > 0.8 fm: G-Matrix OME-potential density kf = 1.4 fm-1: 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

comparison with other theories other theories density dependence of g for constant masses hadron field theory (from rel. Brueckner) DD-ME1 phenomenological 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Equation of state (symmetric nuclear matter): EOS symmetric Masses mm(ρ) and coupling constants gm(ρ) for the meson exchange potentials G-Matrix Gogny (GT2) present model (adjusted to GT2) 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Asymmetry energy S2(ρ): G-Matrix present model DD-ME1 empirical values: 30 MeV £ a4 £ 34 MeV 2 MeV/fm3 < p0 < 4 MeV/fm3 -200 MeV < DK0 < -50 MeV 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Equation of state (neutron matter): EOS neutron matter DD-ME1 present model FP Gogny (GT2) G-Matrix asymmetry energy G-Matrix present model DD-ME1 no isovector property of the correlated system has been used for the fit 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Neutron skin and collective phenomena: Relativistic QRPA with the same functionals Soft dipole mode (pygmy resonances) Spin-isospin modes (GT – IAR) 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Soft dipole modes and neutron skin ρ(r,t) = ρ0 (r) + δρ(r,t) δρ r 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Dipole-strength in neutron-rich Sn isotopes Th. Aumann: Dipole-strength in neutron-rich Sn isotopes Electromagnetic-excitation cross section Photo-neutron cross section stable A PDR GDR Ecentr [MeV] sum rule fraction [%] Γ 124Sn - 15.3 4.8 116 130Sn 10.1 (0.7) 7.0 (3.0) 15.9 (0.5) (1.8) 145 (19) 132Sn 9.8 4.0 (3.1) 16.1 (0.8) 4.7 (2.2) 125 (32) radioactive PDR located at 10 MeV exhausts a few % TRK sum rule in agreement with theory GDR no deviation from systematics P. Adrich et al., PRL 95 (2005) 132501 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

PDR strength versus a4, po Th. Aumann: Result (averaged 130,132Sn) : a4 = 32.0 ± 1.8 MeV po = 2.3 ± 0.8 MeV/fm3 RQRPA – DD-ME N. Paar et al. (2007) S(r) : moderate stiffness 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

neutron skin deduced from pygmy strength Rn-Rp δr Rn – Rp : 130Sn: 0.23 ± 0.04 fm 132Sn: 0.24 ± 0.04 fm LAND Sn isotopes A.Krasznahorkay et al. PRL 82(1999)3216 A. Klimkiewicz, N. Paar, et al, submitted to PRL 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

complex configuration and width : th: Litvinova et al, PRC 79, 054312 (2009) exp: Adrich et al, PRL 75, 132501 (2005) 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Spin-Isospin Resonances: IAR - GTR Z,N Z+1,N-1 spin flip s isospin flip t 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Spin-Isospin Resonances: IAR and GTR charge-exchange excitations proton-neutron relativistic QRPA π and ρ-meson exchange generate the spin-isospin dependent interaction terms the Landau-Migdal zero-range force in the spin-isospin channel (g’0=0.55) S=1 T=1 J = 1+ S=0 T=1 J = 0+ GAMOW-TELLER RESONANCE: ISOBARIC ANALOG STATE: 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

GTR GT-Resonances N. Paar, T. Niksic, D. Vretenar, P.Ring, PR C69, 054303 (2004) experiment 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Isobaric Analog Resonance: IAR N. Paar, T. Niksic, D. Vretenar, P.Ring, PR C69, 054303 (2004) experiment 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Neutron skin and IAR/GRT The isotopic dependence of the energy spacings between the GTR and IAS direct information on the evolution of the neutron skin along the Sn isotopic chain 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Conclusions 1 ------- Conclusions: We study the density dependence in the isovector channel of covariant density functional theory and discuss its influence on: - symmetry energy - neutron skin - EOS in neutron matter Phenomenological functionals with high precision predict for 208Pb: rn-rp = 0.20 fm Semiphenomenological ab-initio calculations show agreement Properties of specific collective excitations correlate with the neutron skins: - GDR, PDR, Spin-Isospin modes Predictions for densities much higher than saturation density are strongly model dependent ! Conclusions 1 ------- 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009

Colaborators: G. A. Lalazissis (Thessaloniki) E. Litvinova (GSI) V. Tselyaev (St. Petersburg) T. Niksic (Zagreb) N. Paar (Zagreb) D. Vretenar (Zagreb) S. Hirose (Tokyo) M. Serra† Y. Akaishi (KEK) T. Otsuka (Tokyo) 7.8.2009 ECT*, Trento: The Lead Radius Experiment and Neutron Rich Matter, Aug 2-7, 2009