MRI of articular cartilage in OA: novel pulse sequences and compositional/functional markers  Garry E. Gold, Deborah Burstein, Bernard Dardzinski, Phillip.

Slides:



Advertisements
Similar presentations
Changes in patellofemoral and tibiofemoral joint cartilage damage and bone marrow lesions over 7 years: the Multicenter Osteoarthritis Study  J.J. Stefanik,
Advertisements

A. Guermazi, H. Alizai, M. D. Crema, S. Trattnig, R. R. Regatte, F. W
Changes in patellofemoral and tibiofemoral joint cartilage damage and bone marrow lesions over 7 years: the Multicenter Osteoarthritis Study  J.J. Stefanik,
Imaging following acute knee trauma
2D and 3D MOCART scoring systems assessed by 9
Considerations in measuring cartilage thickness using MRI: factors influencing reproducibility and accuracy  S. Koo, M.S., G.E. Gold, M.D., T.P. Andriacchi,
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
Cartilage damage in femoroacetabular impingement (FAI): preliminary results on comparison of standard diagnostic vs delayed gadolinium-enhanced magnetic.
Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess.
Anisotropy of collagen fibre alignment in bovine cartilage: comparison of polarised light microscopy and spatially resolved diffusion-tensor measurements 
Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures  T. Baum, G.B. Joseph, D.C.
T1ρ and T2 relaxation times predict progression of knee osteoarthritis
Osteoarthritis year 2013 in review: imaging
M. Siebelt, A. E. van der Windt, H. C. Groen, M. Sandker, J. H
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
C. D. Jordan, E. J. McWalter, U. D. Monu, R. D. Watkins, W. Chen, N. K
Evaluation of native hyaline cartilage and repair tissue after two cartilage repair surgery techniques with 23Na MR imaging at 7 T: initial experience 
Imaging of non-osteochondral tissues in osteoarthritis
7th International Workshop on Osteoarthritis Imaging report: “imaging in OA – now is the time to move ahead”  A. Guermazi, F. Eckstein, D. Hunter, F.
Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee  S.T. Soellner, A. Goldmann, D. Muelheims,
Determining collagen distribution in articular cartilage using contrast-enhanced micro- computed tomography  H.J. Nieminen, T. Ylitalo, S. Karhula, J.-P.
Computer-aided quantification of focal cartilage lesions using MRI: Accuracy and initial arthroscopic comparison  Keh-Yang Lee, Ph.D., Jeffrey N. Masi,
Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI.
G. E. Gold, F. Cicuttini, M. D. Crema, F. Eckstein, A. Guermazi, R
Differences between X-ray and MRI-determined knee cartilage thickness in weight- bearing and non-weight-bearing conditions  M. Marsh, R.B. Souza, B.T.
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
Cluster analysis of quantitative MRI T2 and T1ρ relaxation times of cartilage identifies differences between healthy and ACL-injured individuals at 3T 
B. Bittersohl, F. R. Miese, H. S. Hosalkar, M. Herten, G. Antoch, R
A. Williams, Y. Qian, C.R. Chu  Osteoarthritis and Cartilage 
C.P. Neu  Osteoarthritis and Cartilage 
F. Eckstein, A. Guermazi, G. Gold, J. Duryea, M. -P
Estimation of mechanical properties of articular cartilage with MRI – dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
B. C. Fleming, H. L. Oksendahl, W. A. Mehan, R. Portnoy, P. D
Radiofrequency (RF) coil impacts the value and reproducibility of cartilage spin–spin (T2) relaxation time measurements  B.J. Dardzinski, E. Schneider 
UTE bi-component analysis of T2* relaxation in articular cartilage
Automatic morphometric cartilage quantification in the medial tibial plateau from MRI for osteoarthritis grading  E.B. Dam, Ph.D., J. Folkesson, M.Sc.,
Knee pain and inflammation in the infrapatellar fat pad estimated by conventional and dynamic contrast-enhanced magnetic resonance imaging in obese patients.
R. Lattanzi, C. Petchprapa, D. Ascani, J. S. Babb, D. Chu, R. I
Is increased joint loading detrimental to obese patients with knee osteoarthritis? A secondary data analysis from a randomized trial  M. Henriksen, D.J.
Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison.
E. Bandak, M. Boesen, H. Bliddal, R. G. C. Riis, H. Gudbergsen, M
D. Hayashi, F.W. Roemer, A. Guermazi  Osteoarthritis and Cartilage 
Pre-radiographic osteoarthritic changes are highly prevalent in the medial patella and medial posterior femur in older persons: Framingham OA study  D.
R. D. Newbould, S. R. Miller, J. A. W. Tielbeek, L. D. Toms, A. W
Dr J. H. Naish, Ph. D. , Dr E. Xanthopoulos, Ph. D. , Dr C. E
Degeneration of patellar cartilage in patients with recurrent patellar dislocation following conservative treatment: evaluation with delayed gadolinium-enhanced.
Comments on Beattie et al
Meniscectomy alters the dynamic deformational behavior and cumulative strain of tibial articular cartilage in knee joints subjected to cyclic loads  Y.
F.W. Roemer, M.D.  Osteoarthritis and Cartilage 
Magnetic resonance imaging (MRI)-defined cartilage degeneration and joint pain are associated with poor physical function in knee osteoarthritis – the.
Comparison of BLOKS and WORMS scoring systems part I
Temporal assessment of bone marrow lesions on magnetic resonance imaging in a canine model of knee osteoarthritis: impact of sequence selection  M.-A.
In vivo imaging of cartilage degeneration using μCT-arthrography
MRI-derived T2 relaxation times and cartilage morphometry of the tibio-femoral joint in subjects with and without osteoarthritis during a 1-year follow-up 
Templates of the cartilage layers of the patellofemoral joint and their use in the assessment of osteoarthritic cartilage damage  Z.A Cohen, Ph.D., V.C.
X. Li, Ph. D. , C. Benjamin Ma, M. D. , T. M. Link, M. D. , D. -D
Surface roughness and thickness analysis of contrast-enhanced articular cartilage using mesh parameterization  T. Maerz, M.D. Newton, H.W.T. Matthew,
A new method to analyze dGEMRIC measurements in femoroacetabular impingement: preliminary validation against arthroscopic findings  R. Lattanzi, C. Petchprapa,
Bone loss at subchondral plate in knee osteoarthritis patients with hypertension and type 2 diabetes mellitus  C.Y. Wen, Y. Chen, H.L. Tang, C.H. Yan,
M. S. Swanson, J. W. Prescott, T. M. Best, K. Powell, R. D. Jackson, F
Regional variation in T1ρ and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition  M. Son, S.B. Goodman,
Knee pain and inflammation in the infrapatellar fat pad estimated by conventional and dynamic contrast-enhanced magnetic resonance imaging in obese patients.
Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary.
In vivo structural analysis of subchondral trabecular bone in osteoarthritis of the hip using multi-detector row CT  K. Chiba, M. Ito, M. Osaki, M. Uetani,
Longitudinal evaluation of T1ρ and T2 spatial distribution in osteoarthritic and healthy medial knee cartilage  J. Schooler, D. Kumar, L. Nardo, C. McCulloch,
Correlation between the MR T2 value at 4
R. Meder, Ph. D. , S. K. de Visser, B. Eng. (Med. ), J. C. Bowden, B
B. C. Fleming, H. L. Oksendahl, W. A. Mehan, R. Portnoy, P. D
A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee  Gabrielle Blumenkrantz,
Presentation transcript:

MRI of articular cartilage in OA: novel pulse sequences and compositional/functional markers  Garry E. Gold, Deborah Burstein, Bernard Dardzinski, Phillip Lang, Fernando Boada, Timothy Mosher  Osteoarthritis and Cartilage  Volume 14, Pages 76-86 (January 2006) DOI: 10.1016/j.joca.2006.03.010 Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 1 Axial Driven Equilibrium Fourier Transform (DEFT) image of the patellofemoral joint of a normal volunteer. The contrast in DEFT enhances signal in synovial fluid while preserving cartilage signal. Excellent cartilage detail is seen. Reproduced with permission from Gold et al.46. Osteoarthritis and Cartilage 2006 14, 76-86DOI: (10.1016/j.joca.2006.03.010) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 2 Two sagittal images from the knee of a normal volunteer. (A) FEMR, scan time 2:43. (B) SPGR, scan time 8:56. Both scans were done at the same spatial resolution (512×256, 2mm slice thickness), and have similar SNR. The higher SNR efficiency of FEMR allows a similar morphologic scan to be acquired in a much shorter time. Reproduced with permission from Gold et al.31. Osteoarthritis and Cartilage 2006 14, 76-86DOI: (10.1016/j.joca.2006.03.010) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 3 Axial images of the patella in a patient with knee pain. (A) Fast spin-echo image. (B) 3D fat-suppressed steady-state image. (C) Linear combinations of steady-state imaging. (D) FEMR image. Reproduced with permission from Hargreaves et al.33. Osteoarthritis and Cartilage 2006 14, 76-86DOI: (10.1016/j.joca.2006.03.010) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 4 Steady-state images of the knee of a normal volunteer acquired using an IDEAL technique for fat-water separation. (A) Water image. (B) Fat image. Note that joint fluid is bright in (A) using this BSSFP technique. Reproduced with permission from Gold et al.31. Osteoarthritis and Cartilage 2006 14, 76-86DOI: (10.1016/j.joca.2006.03.010) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 5 IDEAL imaging of cartilage at 3.0T. Water images are shown, but fat and combined images are reconstructed with this method. (A) IDEAL SPGR. (B) IDEAL GRE with bright synovial fluid. Resolution in these images is 0.3×0.6×1.5mm. Osteoarthritis and Cartilage 2006 14, 76-86DOI: (10.1016/j.joca.2006.03.010) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 6 Axial T2 map of the patella of a normal volunteer. Normal T2 relaxation times range from 20 to 70ms, with the higher values closer to the superficial layers of the cartilage. High T2 relaxation times indicate disruption of the collagen network. Osteoarthritis and Cartilage 2006 14, 76-86DOI: (10.1016/j.joca.2006.03.010) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 7 (A) Axial MRI with corresponding arthroscopy in a patient with cartilage damage. (B) Corresponding color-coded T2 map in the patella of the same patient. Osteoarthritis and Cartilage 2006 14, 76-86DOI: (10.1016/j.joca.2006.03.010) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 8 Intra-subject Z-score mapping of T2 relaxation time maps in articular cartilage. (A) Color-coded T2 map in patellar cartilage with increased focal T2 relaxation time in the median ridge at the subchondral bone interface. (B) Corresponding region-of-interest (ROI) and sample locations of four computer-generated profiles across the patellar cartilage. (C) Average T2 relaxation time plot (n=40 profiles) across the patellar cartilage, from subchondral bone (normalized distance of 0 is the subchondral bone, 1 is the articular surface). (D) Intra-subject Z-score map with a voxel cluster size of 4 and color-coded T2 relaxation time values ≥2 standard deviations from the average profile (P=0.018, Monte Carlo simulation). (E) Intra-subject Z-score map with cluster size increased to 5 voxels, ≥2 standard deviations greater than the corresponding average T2 relaxation time (P=0.002, Monte Carlo simulation). These same techniques can be applied to create inter-subject Z-score maps for population comparison studies. Osteoarthritis and Cartilage 2006 14, 76-86DOI: (10.1016/j.joca.2006.03.010) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 9 3D BSSFP DWI. The b-values correspond to the degree of diffusion weighting. Diffusion imaging gives a sense of translational water mobility within the articular cartilage. Reproduced with permission from Miller et al.52. Osteoarthritis and Cartilage 2006 14, 76-86DOI: (10.1016/j.joca.2006.03.010) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 10 Twisted-projection imaging sodium images of the knee of a healthy volunteer done at 3.0T. (A) Single-quantum images. (B) Triple-quantum images. Sodium content in the patellofemoral cartilage is well seen in both cases. Osteoarthritis and Cartilage 2006 14, 76-86DOI: (10.1016/j.joca.2006.03.010) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 11 dGEMRIC image demonstrates lower dGEMRIC index (GAG) in the medial tibial plateau (shown in red) relative to the other articular cartilage surfaces. The variation of GAG in morphologically intact cartilage may yield information relative to early cartilage degeneration and possible repair. Osteoarthritis and Cartilage 2006 14, 76-86DOI: (10.1016/j.joca.2006.03.010) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions