Approximate the answers by referring to the box plot.

Slides:



Advertisements
Similar presentations
Measures of Position - Quartiles
Advertisements

Box Plots. How to create a box plot 1.Put data in numerical order and find the five number summary. 2.Draw a number line, appropriately scaled, to represent.
Box and Whisker Plots A diagram that summarizes data by dividing it into four parts. It compares two sets of data.
Quartiles & Extremes (displayed in a Box-and-Whisker Plot) Lower Extreme Lower Quartile Median Upper Quartile Upper Extreme Back.
The Five Number Summary and Boxplots
12.3 Box-and-Whisker Plots Objectives: Find the range, quartiles, and inter-quartile range for a data set. Make a box and- whisker plot for a data set.
Continued… Obj: draw Box-and-whisker plots representing a set of data Do now: use your calculator to find the mean for 85, 18, 87, 100, 27, 34, 93, 52,
1 Further Maths Chapter 2 Summarising Numerical Data.
Box and Whisker Plots and the 5 number summary Mr. J.D. Miles Turner Middle School Atlanta Georgia
Chapter 2 Section 5 Notes Coach Bridges
Box and Whisker Plots Measures of Central Tendency.
Box and Whisker Plots Box and Whisker Plot A box and whisker plot is a diagram or graph that shows quartiles and extreme values of a set of data.
Section 4-8 Box and Whisker Plots. A Box and Whisker plot can be used to graphically represent a set of data points Box whiskers.
Texas Algebra I Unit 3: Probability/Statistics Lesson 28: Box and Whiskers plots.
Box Plots March 20, th grade. What is a box plot? Box plots are used to represent data that is measured and divided into four equal parts. These.
5-Number Summary A 5-Number Summary is composed of the minimum, the lower quartile (Q1), the median (Q2), the upper quartile (Q3), and the maximum. These.
Learn to display and analyze data in box-and-whisker plots. Course Box-and-Whisker Plots.
Box and Whisker Plots. Vocabulary To make a box and whisker plot, we break the data in quartiles. The ________________ _________________ is the median.
Probability & Statistics Box Plots. Describing Distributions Numerically Five Number Summary and Box Plots (Box & Whisker Plots )
Making a Box & Whiskers Plot Give Me Five!. 5 Numbers are Needed 1) Lowest: Least number of the data set 2) Lower Quartile : The median of the lower half.
Probability & Statistics
Box-and-Whisker Plots
a graphical presentation of the five-number summary of data
Box and Whisker Plots.
Get out your notes we previously took on Box and Whisker Plots.
Box and Whisker Plots and the 5 number summary
Box and Whisker Plots and the 5 number summary
Find the lower and upper quartiles for the data set.
Boxplots.
Box-and-Whisker Plots
Box-and-Whisker Plots
Box-and-Whisker Plots
Describing Distributions Numerically
BOX-and-WHISKER PLOT (Box Plot)
Box-and-Whisker Plots
Boxplots.
Range between the quartiles. Q3 – Q1
How to create a Box and Whisker Plot
Measures of Central Tendency
Constructing Box Plots
Box and Whisker Plots.
Warm Up 1) What is Standard Deviation? 2) Given that the mean of a set of data is 15 and the standard deviation is 3, how many standard deviations away.
Box-And-Whisker Plots
Define the following words in your own definition
Box & Whiskers Plots AQR.
Boxplots.
Boxplots.
Box Plots.
Main Idea and New Vocabulary
Box-and-Whisker Plots
Box-and-Whisker Plots
Freebird
Comparing Statistical Data
1-4 Quartiles, Percentiles and Box Plots
Boxplots.
. . Box and Whisker Measures of Variation Measures of Variation 8 12
Box-and-Whisker Plots
Box-And-Whisker Plots
Box-And-Whisker Plots
Box Plots CCSS 6.7.
5 Number Summaries.
Box-and-Whisker Plots
Box and Whisker Plots and the 5 number summary
Box-and-Whisker Plots
Box-and-Whisker Plots
BOX-and-WHISKER PLOT (Box Plot)
Finding upper and lower outliers Using the 1.5 x IQR Criterion
Ch. 12 Vocabulary 15.) quartile 16.) Interquartile range
Presentation transcript:

Approximate the answers by referring to the box plot. Box Plot A.K.A. Box-And-Whisker Plot IQR = Interquartile Range: You can calculate outliers using IQR: Calculate the IQR for each data set. Find the limits (“fences”) for outliers. Are there any outliers? 9. 10. Approximate the answers by referring to the box plot. 1. What is the range of the data? 2. What is the median of the data? 3. What is the lower quartile? 4. What is the upper quartile? 5. How much of the data is located between 110 and 140? 6. How much of the data is located between 70 and 110? 7. What is the IQR? 8. What are the limits (fences) for outliers on either end? Min 5 Q1 10 Med 14 Q3 22 Max 34 Min 10 Q1 20 Med 23 Q3 25 Max 30

Creating a Box Plot from a set of data 1. Put your data in order. 2. Create a Five-Dot Summary for your data. NOTE: The median is NEVER included as a data point when calculating the upper or lower quartiles. 3. Calculate the IQR to see if your data set includes any outliers. NOTE: If there are outliers, identify the “fences”, draw the whiskers to extend only to the least and greatest data values that lie within the fences, and show any outliers as individual dots. 4. Create a number line to fit your data. A number line must include tick marks and count consistently. 5. Plot your dots from your Five-Dot Summary above (or below) your number line (NOT ON IT). 6. Connect the dots with a box and whiskers (there should be a vertical line at the median). 7. Label each of your five dot data values. (Use vocabulary as well, if instructed to do so. Usually on CRT Free Response type questions!) 10. Create a box plot from the following data. 11. Create a box plot from the data below. 20, 40, 30, 30, 60, 70, 60 Min Q1 Med Q3 Max 1, 3.4, 3, 3.7, 5, 4.2, 7, 4.4 Min Q1 Med Q3 Max