Accurate analytic potentials for BeH, BeD & BeT

Slides:



Advertisements
Similar presentations
PID v2 and v4 from Au+Au Collisions at √sNN = 200 GeV at RHIC
Advertisements

Be BeTe BeO Gamma-ray spectroscopy of cluster hypernuclei : 9  Be K. Shirotori for the Hyperball collaboration, Tohoku Univ. 8 Be is known as the  -
E LECTROMAGNETIC RADII OF THE PROTON FROM ATOMIC SPECTROSCOPY Savely Karshenboim Savely Karshenboim Max-Planck-Institut für Quantenoptik (Garching) & Pulkovo.
NABIL F. FARUK, HUI LI, JING YANG, ROBERT J. LE ROY & PIERRE-NICHOLAS ROY Simulation Studies of the Vibrational Dynamics of para- Hydrogen Clusters 1.
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London September 2009.
9th HITRAN Database & Atmospheric Spectroscopy Applications conferences Formaldehyde broadening coefficients Agnès Perrin Laboratoire Interuniversitaire.
HCl, potentials: Agust,heima,...REMPI/HCl/HCl,agust07-/HClpotXF ej ak.xls Agust,heima,...REMPI/HCl/HCl,agust07-/HClpotXF ej ak.pxp.
Theoretical work on the water monomer Matt Barber Jonathan Tennyson University College London
Full Empirical Potential Curves and Improved Dissociation Energies for the A 1 Π and X 1 Σ + States of CH + Young-Sang Cho, Robert J. Le Roy Department.
Objectives of this course
Calculation of rovibrational H 3 + lines. New level of accuracy Slides of invited talk at Royal Society conference on H 3 + Oleg L. Polyansky 1,2 1 Institute.
A new theoretical insight into the spectroscopic properties of polonium and astatine atoms Pascal Quinet Spectroscopie Atomique et Physique des Atomes.
Towards perfect water line intensities Lorenzo Lodi University College London, Dept of physics & Astronomy, London, UK.
New High Precision Linelist of H 3 + James N. Hodges, Adam J. Perry, Charles R. Markus, Paul A. Jenkins II, G. Stephen Kocheril, and Benjamin J. McCall.
ExoMol: molecular line lists for astrophysical applications
QED of H 3 + Oleg L. Polyansky 1,2 1 Institute of Applied Physics, Russian Academy of Sciences, Uljanov Street 46, Nizhnii Novgorod, Russia Department.
Towards experimental accuracy from the first principles Ab initio calculations of energies of small molecules Oleg L. Polyansky, L.Lodi, J.Tennyson and.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
High-accuracy calculations in H 2 + Jean-Philippe Karr, Laurent Hilico Laboratoire Kastler Brossel (UPMC/ENS) Université d’Evry Val d’Essonne Vladimir.
1 dE/dx  Let’s next turn our attention to how charged particles lose energy in matter  To start with we’ll consider only heavy charged particles like.
Nike Dattani Oxford University Xuan Li Lawrence Berkeley National Lab.
SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di.
Role of vacuum in relativistic nuclear model A. Haga 1, H. Toki 2, S. Tamenaga 2 and Y. Horikawa 3 1. Nagoya Institute of Technology, Japan 2. RCNP Osaka.
Precision tests of bound-state QED: Muonium HFS etc Savely G Karshenboim D.I. Mendeleev Institute for Metrology (St. Petersburg) and Max-Planck-Institut.
A NEW 2 Σ Σ + TRANSITION OF PtF BY INTRACAVITY LASER ABSORPTION SPECTROSCOPY LEAH C O'BRIEN, TAYLOR DAHMS, KAITLIN A WOMACK Department of Chemistry,
Ab Initio and Experimental Studies of the E Internal Rotor State of He-CH 3 F Kelly J. Higgins, Zhenhong Yu, and William Klemperer, Department of Chemistry.
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
Accurate analytic potentials for HeH +, HeD +, HeT +, including finite-mass, relativistic and 4 th order QED Staszek Welsh, Mariusz Puchalski, Grzegorz.
Halo Nucleic Molecules Nike Dattani (a,b), Staszek Welsh (a) (a) Oxford University (b) 京都大学 ( Kyoto University) 2014 年 6 月 19 日.
Brian Plimley Physics 129 November Outline  What is the anomalous magnetic moment?  Why does it matter?  Measurements of a µ  : CERN.
Study of the A 1  + u and b 3  0u states in Cs 2 : New data and global analysis Houssam Salami, Tom Bergeman, Olivier Dulieu, Dan Li, Feng Xie and LiLi.
Double Resonance in the Rubidium Dimer : the 2 1  g state. A. Drozdova*, A.-R. Allouche, G. Wannous, P. Crozet and A.J. Ross Institut Lumière Matière,
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
An analytical potential for the for the a 3  + state of KLi, (derived from observations of the upper vibrational levels only) Houssam Salami, Amanda Ross,
Ro-vibrational Line Lists for Nine Isotopologues of CO Suitable for Modeling and Interpreting Spectra at Very High Temperatures and Diverse Environments.
An Analytic 3-Dimensional Potential Energy Surface for CO 2 -He and Its Predicted Infrared Spectrum Hui Li, Robert J. Le Roy υ International Symposium.
Cosmological variation of the proton-to-electron mass ratio and the spectrum of H 2 Ruth Buning Bachelor project 2004.
Progress Towards a High-Precision Infrared Spectroscopic Survey of the H 3 + Ion Adam J. Perry, James N. Hodges, Charles Markus, G. Stephen Kocheril, Paul.
- compact representation of large (unlimited) bodies of highly precise multi-isotopologue data - reliable extrapolation of V n (r) at large-r in accord.
Data and Analysis of the Spin- Orbit Coupled Mixed A 1 Σ u + and b 3 Π u States of Cs 2 Andrey Stolyarov Moscow State University Tom Bergeman SUNY Stony.
The 69 th International Symposium on Molecular Spectroscopy, June 2014 U. Illinois Champagne-Urbanna, Timothy C. Steimle, Hailing Wang a and Ruohan Zhang.
Experiment vs theory for 3e - Li and 6e - Li 2 Nike Dattani & Bob Le Roy 2015 年 6 月 23 日.
Potentials for 4e - systems BeH+, BeD+ & BeT+ with - 4 th order QED in long-range, and - prediction for halo nucleonic 11 BeH + & 14 BeH + Lena C. M. Li.
QCHS 2010 Lei Zhang1 Lei Zhang (on behalf of BESIII Collaboration) Physics School of Nanjing University Recent.
A New Potential Energy Surface for N 2 O-He, and PIMC Simulations Probing Infrared Spectra and Superfluidity How precise need the PES and simulations be?
Microwave Spectroscopy of the Autoionizing 5d 3/2 n l States of Barium Edward Shuman Tom Gallagher.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Kyoto University, Japan
The bound-electron g factor in light ions
CORRECTIONS TO AB INITIO CESIUM-ARGON INTERACTION POTENTIALS DETERMINED BY SIMULATION OF FREE→FREE ABSORPTION SPECTRA Darby Hewitt, Thomas Spinka, Jason.
Computational Chemistry:
Computer Spectrometers
Ab initio calculations of highly excited NH3 levels
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
Tan Ahn, S. Henderson, S. Aguilar, A. Simon, W. P. Tan,
New Collision Data for H/H2 and CxHy Databases
Studies of Pear Shaped Nuclei using rare isotope beams
Progress report: Calculations on BeH+
The Three-dimensional Potential Energy
Zhejiang Normal University
Darko Simonovic Department of Materials Science & Engineering
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
王国利(Guo-Li Wang) 哈尔滨工业大学
Neutron Optical Model Potential &Symmetry Energy
Quantum molecular dynamics of the hydrated electron
Theoretical study of the direct
Computational methods for Coulomb four-body systems
Coupled channel analysis of the D 1P~ d 3P complex in NaK : potential energy curves and spin-orbit functions Anastasia Drozdova1,2 Amanda Ross1, Andrey.
JLEIC Weekly R&D Meeting
Continuing Influence of Shell Effects in the Nuclear
Presentation transcript:

Accurate analytic potentials for BeH, BeD & BeT Nike Dattani & Staszek Welsh Oxford University & Kyoto University   2014年 6月 20日

Best ab initio for Li2 (6e-) Recent experiments needed +/- 0.01 cm-1 predictions  Experiment would take several years, need better than ab initio

Alternative to ab initio : Empirical potential (MLR) Using very little data, All energies can be predicted very accurately

Experiment successful BECAUSE, MLR’s predicted energies were much better than ab initio Used 1000 digits for maple calculation

MLR (Morse / Long-Range) Potential It’s a Morse potential, but with the correct long-range built in !!!

MLR (Morse / Long-Range) Potential for large r, we should have for HeH+: V(r) = De – C4 / r4 – C6 / r6 – C7 / r7 – C8 / r8 … So u(r) = C4 / r4 + C6 / r6 + C7 / r7 + C8 / r8 … It’s a Morse potential, but we can make the long-range part correct !!!

V(r) = De – C4 / r4 – C6 / r6 – C7 / r7 – C8 / r8 … C4 : dipole polarizability C6 : quadrupole polarizability, non-adiabatic dipole polarizability C7 : mixed dipole-dipole-quadrupole polarizability (3rd order) C8 : hyperpolarizability (4th order), octupole polarizability, & non-adiabatic quadrupole polarizability

for large r, we should have: V(r) = De – C4 / r4 – C6 / r6 – C7 / r7 – C8 / r8 … C4 : dipole polarizability non-relativistic 1.383192174455(1) 13 digits ! relativistic corrections -80.35(2) QED 3rd order modulo Bethe ln QED 3rd order with Bethe ln QED 4th order, finite-mass 3rd order 30.473(1) 0.193(2) 0.49(23) total dipole polarizability 1383760.79(23)

for large r, we should have: V(r) = De – C4 / r4 – C6 / r6 – C7 / r7 – C8 / r8 … C6 : quadrupole polarizability non-relativistic 2.44508310433(5) 12 digits !!! relativistic corrections -1.750786(2) x 10-4 finite-mass corrections 1.8749483(3) x 10-3 total quadrupole polarizability 2.4467829742(4)

1e- : Mu  : H  2e- : He : H2 3e- : Li 2e- : HeH+ In Progress Experimental energy gap is hyperfine structure according to table 4 of: http://arxiv.org/pdf/hep-ph/0509010.pdf He (from Table VIII of http://www.fuw.edu.pl/~krp/papers/hfs_theory_v2.pdf): Experimental: 6 739 701.177(16) Theoretical: 6 739 699.93 Fourth order means: alpha^4

1e- : Mu  : H  2e- : He : H2 3e- : Li 5e- : BeH Experimental energy gap is hyperfine structure according to table 4 of: http://arxiv.org/pdf/hep-ph/0509010.pdf He (from Table VIII of http://www.fuw.edu.pl/~krp/papers/hfs_theory_v2.pdf): Experimental: 6 739 701.177(16) Theoretical: 6 739 699.93 Fourth order means: alpha^4

5e- : BeH V(r) = - C6 / r3 – C8 / r6 – C10 / r8 … Most accurate empirical potential: 2006 Le Roy et al. JMS 236, 178-188  C6, C8, C10 not included  couldn’t determine leading BOB term (u0 )  De had uncertainty of +/- 200cm-1  single-state fit (excited states not included) Experimental energy gap is hyperfine structure according to table 4 of: http://arxiv.org/pdf/hep-ph/0509010.pdf He (from Table VIII of http://www.fuw.edu.pl/~krp/papers/hfs_theory_v2.pdf): Experimental: 6 739 701.177(16) Theoretical: 6 739 699.93 Fourth order means: alpha^4

Experimental energy gap is hyperfine structure according to table 4 of: http://arxiv.org/pdf/hep-ph/0509010.pdf He (from Table VIII of http://www.fuw.edu.pl/~krp/papers/hfs_theory_v2.pdf): Experimental: 6 739 701.177(16) Theoretical: 6 739 699.93 Fourth order means: alpha^4

5e- : BeH    Next step!  C6, C8, C10 not included  couldn’t determine leading BOB term (u0 )  De had uncertainty of +/- 200cm-1  single-state fit (excited states not included)   Next step! Experimental energy gap is hyperfine structure according to table 4 of: http://arxiv.org/pdf/hep-ph/0509010.pdf He (from Table VIII of http://www.fuw.edu.pl/~krp/papers/hfs_theory_v2.pdf): Experimental: 6 739 701.177(16) Theoretical: 6 739 699.93 Fourth order means: alpha^4

1e- : Mu 2e- : He : H2 3e- : Li 5e- : BeH in progress 5e- : LiHe Experimental energy gap is hyperfine structure according to table 4 of: http://arxiv.org/pdf/hep-ph/0509010.pdf He (from Table VIII of http://www.fuw.edu.pl/~krp/papers/hfs_theory_v2.pdf): Experimental: 6 739 701.177(16) Theoretical: 6 739 699.93 Fourth order means: alpha^4

Experimental energy gap is hyperfine structure according to table 4 of: http://arxiv.org/pdf/hep-ph/0509010.pdf He (from Table VIII of http://www.fuw.edu.pl/~krp/papers/hfs_theory_v2.pdf): Experimental: 6 739 701.177(16) Theoretical: 6 739 699.93 Fourth order means: alpha^4

Thank you  VERY MUCH !!!