Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
Advertisements

Modelling & Simulation of Semiconductor Devices
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
L30 01May031 Semiconductor Device Modeling and Characterization EE5342, Lecture 30 Spring 2003 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 21 – Spring 2011
Semiconductor Device Modeling and Characterization – EE5342 Lecture 22 – Spring 2011 Professor Ronald L. Carter
L27 23Apr021 Semiconductor Device Modeling and Characterization EE5342, Lecture 27 -Sp 2002 Professor Ronald L. Carter
L19 March 291 EE5342 – Semiconductor Device Modeling and Characterization Lecture 19 - Spring 2005 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
L17 March 221 EE5342 – Semiconductor Device Modeling and Characterization Lecture 17 - Spring 2005 Professor Ronald L. Carter
Professor Ronald L. Carter
Chapter 4 – Bipolar Junction Transistors (BJTs) Introduction
Chapter 4 DC Biasing–BJTs
Recall Lecture 10 Introduction to BJT 3 modes of operation
Voltage Divider Bias Voltage-divider bias is the most widely used type of bias circuit. Only one power supply is needed and voltage-divider bias is more.
Bipolar Junction Transistor Circuit Analysis
EKT104 ANALOG ELECTRONIC CIRCUITS [LITAR ELEKTRONIK ANALOG] BASIC BJT AMPLIFIER (PART I) DR NIK ADILAH HANIN BINTI ZAHRI
Recall Last Lecture Biasing of BJT Three types of biasing
Bipolar Junction Transistors (BJT)
Lecture 10 Bipolar Junction Transistor (BJT)
Bipolar Junction Diode & DC Mr. Zeeshan Ali, Asst. Professor
Lecture 25 OUTLINE The Bipolar Junction Transistor Introduction
Chapter 4 Bipolar Junction Transistor
TRANSISTOR.
EELE 2321 – Electronics Spring, 2013 Bipolar Junction Transistor (BJT) Structure Eng. Wazen M. Shbair.
Bipolar Junction Transistor
Chapter 4(c) DC Biasing – Bipolar Junction Transistors (BJTs)
SMALL SIGNAL ANALYSIS OF CB AMPLIFIER
SMALL SIGNAL ANALYSIS OF CE AMPLIFIER
The Currents of a BJT The collector current. The base Current.
Chapter 1 – Revision Part 2
Chapter 8 Bipolar Junction Transistors
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Recall Lecture 10 DC analysis of BJT
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 24 OUTLINE The Bipolar Junction Transistor Introduction
Lecture’s content Objectives BJT – Small Signal Amplifier
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
Professor Ronald L. Carter
Lecture 26 OUTLINE The BJT (cont’d) Ideal transistor analysis
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Recall Lecture 10 Introduction to BJT 3 modes of operation
Lecture 25 OUTLINE The Bipolar Junction Transistor Introduction
Bipolar Junction Transistor Circuit Analysis
MALVINO Electronic PRINCIPLES SIXTH EDITION.
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 26 OUTLINE The BJT (cont’d) Ideal transistor analysis
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 15
Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 19
ChapTer FoUr DC BIASING - BIPOLAR JUNCTION TRANSISTORS (BJTs)
Professor Ronald L. Carter
ChapTer FoUr DC BIASING - BIPOLAR JUNCTION TRANSISTORS (BJTs)
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 18
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 20 - Fall 2010
Chapter 5 Bipolar Junction Transistors
Presentation transcript:

Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ Semiconductor Device Modeling and Characterization EE5342, Lecture 19 Spring 2003 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ L19 25Mar03

Distributed resis- tance in a planar BJT emitter base collector reg 4 reg 3 reg 2 reg 1 coll. base & emitter contact regions The base current must flow lateral to the wafer surface Assume E & C cur-rents perpendicular Each region of the base adds a term of lateral res.  vBE diminishes as current flows L19 25Mar03

Simulation of 2- dim. current flow =  DV  Both sources have same current iB1 = iB. The effective value of the 2-dim. base resistance is Rbb’(iB) = DV/iB = RBBTh Distributed device is repr. by Q1, Q2, … Qn Area of Q is same as the total area of the distributed device. Both devices have the same vCE = VCC L19 25Mar03

Analytical solution for distributed Rbb Analytical solution and SPICE simulation both fit RBB = Rbmin + Rbmax/(1 + iB/IRB)aRB L19 25Mar03

Distributed base resistance function Normalized base resis-tance vs. current. (i) RBB/RBmax, (ii) RBBSPICE/RBmax, after fitting RBB and RBBSPICE to RBBTh (x) RBBTh/RBmax. FromAn Accurate Mathematical Model for the Intrinsic Base Resistance of Bipolar Transistors, by Ciubotaru and Carter, Sol.-St.Electr. 41, pp. 655-658, 1997. RBBTh = RBM + DR/(1+iB/IRB)aRB (DR = RB - RBM ) L19 25Mar03

Gummel Poon Base Resistance If IRB = 0, RBB = RBM+(RB-RBM)/QB If IRB > 0 RB = RBM + 3(RB-RBM)(tan(z)-z)/(ztan2(z)) [1+144iB/(p2IRB)]1/2-1 z = (24/p2)(iB/IRB)1/2 Regarding (i) RBB and (x) RTh on previous slide, RBB = Rbmin + Rbmax/(1 + iB/IRB)aRB L19 25Mar03

Gummel-Poon Static npn Circuit Model Intrinsic Transistor RC B RBB ILC IBR ICC - IEC = {IS/QB}* {exp(vBE/NFVt)-exp(vBC/NRVt)} B’ ILE IBF RE E L19 25Mar03

Gummel Poon npn Model Equations IBF = IS expf(vBE/NFVt)/BF ILE = ISE expf(vBE/NEVt) IBR = IS expf(vBC/NRVt)/BR ILC = ISC expf(vBC/NCVt) ICC - IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB QB = { + [ + (BF IBF/IKF + BR IBR/IKR)]1/2 }  (1 - vBC/VAF - vBE/VAR )-1 L19 25Mar03

VAR Parameter Extraction (rEarly) iE = - IEC = (IS/QB)exp(vBC/NRVt), where ICC = 0, and QB-1 = (1-vBC/VAF-vBE/VAR ) {IKR terms }-1, so since vBE = vBC - vEC, VAR ~ iE/[iE/vBE]vBC iE iB vEC vBC 0.2 < vEC < 5.0 0.7 < vBC < 0.9 Reverse Active Operation L19 25Mar03

Reverse Early Data for VAR At a particular data point, an effective VAR value can be calculated VAReff = iE/[iE/vBE]vBC The most accurate is at vBE = 0 (why?) vBC = 0.85 V vBC = 0.75 V iE(A) vs. vEC (V) L19 25Mar03

Reverse Early VAR extraction VAReff = iE/[iE/vBE]vBC VAR was set at 200V for this data When vBE = 0 vBC = 0.75VAR=200.5 vBC = 0.85VAR=200.2 vBC = 0.75 V vBC = 0.85 V VAReff(V) vs. vEC (V) L19 25Mar03

VAF Parameter Extraction (fEarly) Forward Active Operation iC = ICC = (IS/QB)exp(vBE/NFVt), where ICE = 0, and QB-1 = (1-vBC/VAF-vBE/VAR )* {IKF terms }-1, so since vBC = vBE - vCE, VAF ~ iC/[iC/vBC]vBE iC iB vCE vBE 0.2 < vCE < 5.0 0.7 < vBE < 0.9 L19 25Mar03

Forward Early Data for VAF At a particular data point, an effective VAF value can be calculated VAFeff = iC/[iC/vBC]vBE The most accurate is at vBC = 0 (why?) vBE = 0.85 V vBE = 0.75 V iC(A) vs. vCE (V) L19 25Mar03

Forward Early VAf extraction VAFeff = iC/[iC/vBC]vBE VAF was set at 100V for this data When vBC = 0 vBE = 0.75VAF=101.2 vBE = 0.85VAF=101.0 vBE = 0.75 V vBE = 0.85 V VAFeff(V) vs. vCE (V) L19 25Mar03

BJT Characterization Forward Gummel vBCx= 0 = vBC + iBRB - iCRC vBEx = vBE +iBRB +(iB+iC)RE iB = IBF + ILE = ISexp(vBE/NFVt)/BF + ISEexpf(vBE/NEVt) iC = bFIBF/QB = ISexp(vBE/NFVt)  (1-vBC/VAF-vBE/VAR ) {IKF terms }-1 iC RC iB RE RB vBEx vBC vBE + - L19 25Mar03

Sample fg data for parameter extraction IS = 10f NF = 1 BF = 100 Ise = 10E-14 Ne = 2 Ikf = .1m Var = 200 Re = 1 Rb = 100 iC data iB data iC, iB vs. vBEext L19 25Mar03

Definitions of Neff and ISeff In a region where iC or iB is approxi-mately a single exponential term, then iC or iB ~ ISeffexp (vBEext /(NFeffVt) where Neff = {dvBEext/d[ln(i)]}/Vt, and ISeff = exp[ln(i) - vBEext/(NeffVt)] L19 25Mar03

Forward Gummel Data Sensitivities Region a - IKFIS, RB, RE, NF, VAR Region b - IS, NF, VAR, RB, RE Region c - IS/BF, NF, RB, RE Region d - IS/BF, NF Region e - ISE, NE vBCx = 0 c iC b d iB e iC(A),iB(A) vs. vBE(V) L19 25Mar03

Region (b) fg Data Sensitivities Region b - IS, NF, VAR, RB, RE iC = bFIBF/QB = ISexp(vBE/NFVt)  (1-vBC/VAF-vBE/VAR ){IKF terms }-1 L19 25Mar03

Region (e) fg Data Sensitivities Region e - ISE, NE iB = IBF + ILE = (IS/BF)expf(vBE/NFVt) + ISEexpf(vBE/NEVt) L19 25Mar03

Simple extraction of IS, ISE from data Data set used IS = 10f ISE = 10E-14 Flat ISeff for iC data = 9.99E-15 for 0.230 < vD < 0.255 Max ISeff value for iB data is 8.94E-14 for vD = 0.180 iC data iB data ISeff vs. vBEext L19 25Mar03

Simple extraction of NF, NE from fg data Data set used NF=1 NE=2 Flat Neff region from iC data = 1.00 for 0.195 < vD < 0.390 Max Neff value from iB data is 1.881 for 0.180 < vD < 0.181 iB data iC data NEeff vs. vBEext L19 25Mar03

Region (d) fg Data Sensitivities Region d - IS/BF, NF iB = IBF + ILE = (IS/BF)expf(vBE/NFVt) + ISEexpf(vBE/NEVt) L19 25Mar03

Simple extraction of BF from data Data set used BF = 100 Extraction gives max iC/iB = 92 for 0.50 V < vD < 0.51 V 2.42A < iD < 3.53A Minimum value of Neff =1 for slightly lower vD and iD iC/iB vs. iC L19 25Mar03

Region (a) fg Data Sensitivities Region a - IKFIS, RB, RE, NF, VAR iC = bFIBF/QB = ISexp(vBE/NFVt)  (1-vBC/VAF-vBE/VAR ){IKF terms }-1 If iC > IKF, then iC ~ [IS*IKF]1/2 exp(vBE/2NFVt)  (1-vBC/VAF-vBE/VAR ) L19 25Mar03

Region (c) fg Data Sensitivities Region c - IS/BF, NF, RB, RE iB = IBF + ILE = (IS/BF)expf(vBE/NFVt) + ISEexpf(vBE/NEVt) L19 25Mar03

BJT Characterization Reverse Gummel vBEx= 0 = vBE + iBRB - iERE vBCx = vBC +iBRB +(iB+iE)RC iB = IBR + ILC = (IS/BR)expf(vBC/NRVt) + ISCexpf(vBC/NCVt) iE = bRIBR/QB = ISexpf(vBC/NRVt) (1-vBC/VAF-vBE/VAR ) {IKR terms }-1 iE RC iB RE RB vBCx vBC vBE + - L19 25Mar03

Sample rg data for parameter extraction IS=10f Nr=1 Br=2 Isc=10p Nc=2 Ikr=.1m Vaf=100 Rc=5 Rb=100 iB data iE data iE, iB vs. vBCext L19 25Mar03

Reverse Gummel Data Sensitivities c Region a - IKRIS, RB, RC, NR, VAF Region b - IS, NR, VAF, RB, RC Region c - IS/BR, NR, RB, RC Region d - IS/BR, NR Region e - ISC, NC vBCx = 0 a d e iB b iE iE(A),iB(A) vs. vBC(V) L19 25Mar03