N. C. Hidvegi, M. A. , M. R. C. S. , Dr K. M. Sales, Ph. D. , D

Slides:



Advertisements
Similar presentations
Efficacy of ultrasound therapy for the management of knee osteoarthritis: a systematic review with meta-analysis A. Loyola-Sánchez, J. Richardson, N.J.
Advertisements

The relationship between specific tissue lesions and pain severity in persons with knee osteoarthritis Ms L. Torres, B.A., Dr D.D. Dunlop, Ph.D., Dr C.
B. Bai, Y. Li  Osteoarthritis and Cartilage 
L. J. Sandell, Ph. D. , X. Xing, M. D. , C. Franz, M. A. , S
MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation – divergence in pathways leading to aggrecanase and MMP-mediated.
Differential effects of tumor necrosis factor-α and interleukin-1β on cell death in human articular chondrocytes  B. Caramés, Ph.D., M.J. López-Armada,
Inhibition of cyclooxygenase 2 expression by diallyl sulfide on joint inflammation induced by urate crystal and IL-1β  H.-S. Lee, M.D., Ph.D., C.-H. Lee,
Modulation of articular chondrocyte proliferation and anionic glycoconjugate synthesis by glucosamine (GlcN), N-acetyl GlcN (GlcNAc) GlcN sulfate salt.
Culture expanded primary chondrocytes have potent immunomodulatory properties and do not induce an allogeneic immune response  P. Lohan, O. Treacy, K.
NF-κBp65-specific siRNA inhibits expression of genes of COX-2, NOS-2 and MMP-9 in rat IL-1β-induced and TNF-α-induced chondrocytes  Dr C. Lianxu, Ph.D.,
Long-term NSAID treatment directly decreases COX-2 and mPGES-1 production in the articular cartilage of patients with osteoarthritis  M.A. Álvarez-Soria,
H.J. Smith, Ph.D., J.B. Richardson, M.D., A. Tennant, Ph.D. 
Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs  B.D. Elder,
Anti-apoptotic effect of transforming growth factor-β1 on human articular chondrocytes: role of protein phosphatase 2A  M. Lires-Deán, B.S., B. Caramés,
S. E. Cisewski, L. Zhang, J. Kuo, G. J. Wright, Y. Wu, M. J. Kern, H
M. Akagi, M. D. , Ph. D. , A. Ueda, M. D. , T. Teramura, Ph. D. , S
Comparison of the chondrosarcoma cell line SW1353 with primary human adult articular chondrocytes with regard to their gene expression profile and reactivity.
A.J. McGregor, B.G. Amsden, S.D. Waldman  Osteoarthritis and Cartilage 
Osteoarthritis as a disease of mechanics
S. Varghese, Ph. D. , P. Theprungsirikul, B. S. , S. Sahani, B. S. , N
Osmolarity effects on bovine articular chondrocytes during three-dimensional culture in alginate beads  X. Xu, J.P.G. Urban, U.K. Tirlapur, Z. Cui  Osteoarthritis.
Inhibition of lysyl oxidase activity can delay phenotypic modulation of chondrocytes in two-dimensional culture  J. Farjanel, Ph.D., S. Sève, Ph.D., A.
Osteoarthritis year 2011 in review: biochemical markers of osteoarthritis: an overview of research and initiatives  Y. Henrotin  Osteoarthritis and Cartilage 
Decreased proteoglycan degradation in IL-1β-treated cartilage co-cultured with TIMP-3- transduced cells  J. Mason, A. Donahue, A. Yoskowitz, D. Richardson 
J.A. Collins, R.J. Moots, R. Winstanley, P.D. Clegg, P.I. Milner 
Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked.
Oxidative stress induces expression of osteoarthritis markers procollagen IIA and 3B3(−) in adult bovine articular cartilage  I.M. Khan, Ph.D., S.J. Gilbert,
Viability and volume of in situ bovine articular chondrocytes—changes following a single impact and effects of medium osmolarity  Dr Peter G. Bush, Ph.D.,
Cryoprotectant permeation through human articular cartilage
Selenomethionine inhibits IL-1β inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2) expression in primary human chondrocytes  A.W.M. Cheng,
Characterization of pro-apoptotic and matrix-degradative gene expression following induction of osteoarthritis in mature and aged rabbits  Dr. C.M. Robertson,
Osteogenic protein-1 promotes the formation of tissue-engineered cartilage using the alginate-recovered-chondrocyte method  Dr. K. Masuda, M.D., B.E.
PCB126 induces apoptosis of chondrocytes via ROS-dependent pathways
Methylation of the OP-1 promoter: potential role in the age-related decline in OP-1 expression in cartilage  R.F. Loeser, M.D., H.-J. Im, Ph.D., B. Richardson,
M. Cucchiarini, H. Madry, E.F. Terwilliger 
A stable isotope method for the simultaneous measurement of matrix synthesis and cell proliferation in articular cartilage in vivo  K.W. Li, S.A. Siraj,
Stem cell therapy for human cartilage defects: a systematic review
Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes  A. Marsano, M.Sc., S.J. Millward-Sadler,
N.D. Miljkovic, M.D., Ph.D., G.M. Cooper, Ph.D., K.G. Marra, Ph.D. 
J. Ranstam  Osteoarthritis and Cartilage 
Z. Lin, M. B. , N. J. Pavlos, B. Sc. (Hons. ), Ph. D. , M. A. Cake, B
A double-blind randomized controlled trial comparing alternate forms of high molecular weight hyaluronan for the treatment of osteoarthritis of the knee 
V. I. Grishko, Ph. D. , R. Ho, Ph. D. , G. L. Wilson, Ph. D. , A. W
Medial arch supports do not significantly alter the knee adduction moment in people with knee osteoarthritis  R.S. Hinman, L. Bardin, M. Simic, K.L. Bennell 
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
P. I. Milner, Ph. D. , B. V. Sc. , B. Sc. (Hons. ), M. R. C. V. S. , R
Osteoarthritis and Cartilage
Avocado soybean unsaponifiables (ASU) suppress TNF-α, IL-1β, COX-2, iNOS gene expression, and prostaglandin E2 and nitric oxide production in articular.
Mevastatin reduces cartilage degradation in rabbit experimental osteoarthritis through inhibition of synovial inflammation  Y. Akasaki, M.D., S. Matsuda,
Who should have a joint replacement? A plea for more ‘phronesis’
Synergistic effect of chondroitin sulfate and cyclic pressure on biochemical and morphological properties of chondrocytes from articular cartilage  G.
Comparison between chondroprotective effects of glucosamine, curcumin, and diacerein in IL-1β-stimulated C-28/I2 chondrocytes  S. Toegel, M.Pharm.S.,
W.C. Bae, Ph.D., B.L. Schumacher, B.S., R.L. Sah, M.D., Sc.D. 
V.K. Shekhawat, M.P. Laurent, C. Muehleman, M.A. Wimmer 
Effect of a glucosamine derivative on impact-induced chondrocyte apoptosis in vitro. A preliminary report  C.A.M. Huser, Ph.D., M.E. Davies, Ph.D.  Osteoarthritis.
Erratum to “MMP and non-MMP-mediated release of aggrecan and its fragments from articular cartilage: a comparative study of three different aggrecan and.
D.J. Hunter  Osteoarthritis and Cartilage 
J. Haag, R. Voigt, S. Soeder, T. Aigner  Osteoarthritis and Cartilage 
PTHrP overexpression partially inhibits a mechanical strain-induced arthritic phenotype in chondrocytes  D. Wang, J.M. Taboas, R.S. Tuan  Osteoarthritis.
Most patients gain weight in the 2 years after total knee arthroplasty: comparison to a healthy control group  J.A. Zeni, L. Snyder-Mackler  Osteoarthritis.
Estrogen reduces mechanical injury-related cell death and proteoglycan degradation in mature articular cartilage independent of the presence of the superficial.
Dynamic compression of single cells
Osteoarthritis year 2012 in review: biology
Knee cartilage defects in a sample of older adults: natural history, clinical significance and factors influencing change over 2.9 years  J. Carnes, O.
Inhibition of adenosine kinase attenuates interleukin-1- and lipopolysaccharide-induced alterations in articular cartilage metabolism  Raina Petrov, B.S.,
Effects of helium–neon laser on the mucopolysaccharide induction in experimental osteoarthritic cartilage  Y.-S. Lin, M.Sc, Dr M.-H. Huang, M.D., Ph.D.,
Osteoarthritis year in review 2016: mechanics
IGF-1 regulation of type II collagen and MMP-13 expression in rat endplate chondrocytes via distinct signaling pathways  M. Zhang, Ph.D., Q. Zhou, M.D.,
General Information Osteoarthritis and Cartilage
Enhanced cell-induced articular cartilage regeneration by chondrons; the influence of joint damage and harvest site  L.A. Vonk, T.S. de Windt, A.H.M.
Presentation transcript:

A low temperature method of isolating normal human articular chondrocytes  N.C. Hidvegi, M.A., M.R.C.S., Dr K.M. Sales, Ph.D., D. Izadi, B.A. (Hons. Cantab.), J. Ong, M.R.C.S., Dr P. Kellam, Ph.D., D. Eastwood, F.R.C.S. Orth., P.E.M. Butler, F.R.C.S. Plast.  Osteoarthritis and Cartilage  Volume 14, Issue 1, Pages 89-93 (January 2006) DOI: 10.1016/j.joca.2005.08.007 Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 1 (a) Graph to show how the activity of collagenases (types I, II and XI) varies with temperature. The activity is expressed as a percentage of the activity at 37°C (the absolute activity) calculated using Collagenase Chromophoric Substrate Kit (Sigma, UK). This is a colourimetric assay based on the Wuensch and Heidrich method14,15. (b) Graph to show how the number of isolated viable chondrocytes varies with digestion temperature (either 27°C or 37°C) and type of collagenase used (types Ia, II or XI). *Denotes significantly different (P<0.05) cell viability when compared to digestion with the same enzyme, at 37°C. There was no significant difference between the enzymes at either temperature. Error bars represent standard error of the mean. Osteoarthritis and Cartilage 2006 14, 89-93DOI: (10.1016/j.joca.2005.08.007) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 2 Graphs a–d show the results of experiment 2 a–d, respectively. Error bars represent standard error of the mean. (a) Graph to show amount of viable cells per gram cartilage after no pre-digestion or pre-digestion with either protease or trypsin, followed by digestion with different types of collagenase (types Ia, II or XI). *Denotes significantly different (P<0.05) cell viability when compared to trypsin pre-digestion followed by collagenase II digestion. Error bars represent standard error of the mean. (b) Graph to show number of attached cells ×105 per gram of weight of cartilage after pre-digestion with trypsin at two different concentrations (12,500 and 25,000IU/ml) and for different time periods (15, 30 and 60min). *Denotes significantly different (P<0.05) cell adherence when compared to other methods of isolation. (c) Number of adherent cells per gram of cartilage after digestion with collagenase type Ia or XI at either 400 or 800CDA/ml. All digestions are in combination with 800CDA/ml collagenase II. *Denotes significantly different (P<0.05) cell viability when compared to other types of digestion. (d) The effect of hyaluronidase at two different concentrations, and at both the pre-digestion and post-digestion stages when compared to the control digestion technique. Control refers to the optimised protocol we had developed so far, namely a pre-digestion with trypsin at a concentration of 25,000IU/ml for 15min, followed by overnight digestion with collagenases I and II, both at a concentration of 800CDA/ml of media 1. *Denotes significantly different (P<0.05) cell viability when compared to other types of digestion. O/N=overnight. Osteoarthritis and Cartilage 2006 14, 89-93DOI: (10.1016/j.joca.2005.08.007) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions