VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

Slides:



Advertisements
Similar presentations
Advanced Piloting Cruise Plot.
Advertisements

Feichter_DPG-SYKL03_Bild-01. Feichter_DPG-SYKL03_Bild-02.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Part 3 Probabilistic Decision Models
Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
Document #07-2I RXQ Customer Enrollment Using a Registration Agent (RA) Process Flow Diagram (Move-In) (mod 7/25 & clean-up 8/20) Customer Supplier.
and 6.855J Spanning Tree Algorithms. 2 The Greedy Algorithm in Action
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
My Alphabet Book abcdefghijklm nopqrstuvwxyz.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Year 6 mental test 5 second questions
Year 6 mental test 10 second questions
2010 fotografiert von Jürgen Roßberg © Fr 1 Sa 2 So 3 Mo 4 Di 5 Mi 6 Do 7 Fr 8 Sa 9 So 10 Mo 11 Di 12 Mi 13 Do 14 Fr 15 Sa 16 So 17 Mo 18 Di 19.
ZMQS ZMQS
VARUN GUPTA Carnegie Mellon University 1 Partly based on joint work with: Anshul Gandhi Mor Harchol-Balter Mike Kozuch (CMU) (CMU) (Intel Research)
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
ABC Technology Project
EU market situation for eggs and poultry Management Committee 20 October 2011.
1 Undirected Breadth First Search F A BCG DE H 2 F A BCG DE H Queue: A get Undiscovered Fringe Finished Active 0 distance from A visit(A)
2 |SharePoint Saturday New York City
VOORBLAD.
15. Oktober Oktober Oktober 2012.
1 Breadth First Search s s Undiscovered Discovered Finished Queue: s Top of queue 2 1 Shortest path from s.
“Start-to-End” Simulations Imaging of Single Molecules at the European XFEL Igor Zagorodnov S2E Meeting DESY 10. February 2014.
THE WORK AT ANTIOCH. I. WORKED ACCORDING TO ABILITY, Acts 13:1-3 A. "Ministered," v. 3; Eph. 4:11-13; 1 Pet. 4:11; 1 Cor. 12: 14-22; Matt. 25:15, 21,
BIOLOGY AUGUST 2013 OPENING ASSIGNMENTS. AUGUST 7, 2013  Question goes here!
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Squares and Square Root WALK. Solve each problem REVIEW:
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
© 2012 National Heart Foundation of Australia. Slide 2.
LO: Count up to 100 objects by grouping them and counting in 5s 10s and 2s. Mrs Criddle: Westfield Middle School.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
Introduction to Queuing Theory
H to shape fully developed personality to shape fully developed personality for successful application in life for successful.
Presenteren wij ………………….
Januar MDMDFSSMDMDFSSS
Analyzing Genes and Genomes
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Intracellular Compartments and Transport
PSSA Preparation.
Immunobiology: The Immune System in Health & Disease Sixth Edition
Essential Cell Biology
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
Immunobiology: The Immune System in Health & Disease Sixth Edition
Energy Generation in Mitochondria and Chlorplasts
By Rasmussen College. 1. What majors or programs do you offer? 2. What is the average length of your programs? 3. What percentage of your students graduate?
CpSc 3220 Designing a Database
Presentation transcript:

VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

2 K homogeneous First-Come-First-Served servers Exponentially-distributed job sizes Load Balancer Knows queue lengths Not job sizes Q: What is the optimal load balancing policy? A: Join-the-Shortest-Queue Q: Why? A: JSQ = Minimize Expected Response time of arrival GOAL: Minimize Mean Response Time E[T] Poisson( λ )

3 μ=4μ=4 μ=4μ=4 μ =1 K heterogeneous First-Come-First-Served servers Exponentially-distributed job sizes Load Balancer Knows queue lengths Not job sizes Q: What is the optimal load balancing policy? μ =1 GOAL: Minimize Mean Response Time E[T] Poisson( λ )

Smart-JSQ = Join- Shortest-Queue (with smart tie breaks) 4 MER = Minimum Expected Response time μ=4μ=4 μ =1 μ=4μ=4 μ=4μ=4 μ=4μ=4 Q: Which is the better policy? Q: What is the optimal policy?

5 Outline Many-servers limit: Simulation Results Effect of K Effect of arrival rate ( λ ) Effect of degree of heterogeneity Light-traffic regimeHeavy-traffic regime Partial characterization of the optimal policy Complete characterization of optimal policies First asymptotic approximations

Poisson( λ ) 1 K 1 = α 1 K K 2 = α 2 K

K 1 = K/3 K 2 = 2K/3 Poisson( λ ) Q: Performance of MER 1 Case 1: λ < 4K/3 Fast can handle λ Arrivals find at least one fast idle E[T] = 1/4 Case 2: λ > 4K/3 Fast can not handle λ Can not use slow until each fast has 3 jobs !

K 1 = K/3 K 2 = 2K/3 Poisson( λ ) Q: Performance of Smart-JSQ 1 Case 1: λ < 4K/3 Fast can handle λ Arrivals find at least one fast idle E[T] = 1/4 Case 2: λ > 4K/3 Use slow as soon as each fast has 1 job !

K 1 = K/3 K 2 = 2K/3 Poisson( λ ) Smart-JSQ better than MER! …but any policy which sends to slow when all fast are busy is identical in light-traffic 1

HYBRID (smart- JSQ+MER) Smart-JSQ 10 MER μ=4μ=4 μ =1 μ =4 μ =1 Light-traffic HYBRID = Smart-JSQ μ=4μ=4 μ =1 μ =4 μ =1 μ=4μ=4 μ=4μ=4 smart-JSQ when some server idle MER when all busy

11 Outline Many-servers limit: Simulation Results Effect of K Effect of arrival rate ( λ ) Effect of degree of heterogeneity Light-traffic regimeHeavy-traffic regime Partial characterization of the optimal policy Complete characterization of optimal policies First asymptotic approximations

K 1 = α 1 K K 2 = α 2 K Poisson( λ ) GOAL Analysis of policies for heterogeneous servers Analysis of JSQ for homogeneous server

K 1 = α 1 K K 2 = α 2 K Poisson( λ ) GOAL Analysis of policies for heterogeneous servers Analysis of JSQ for homogeneous server

14 K Poisson( λ ) Analysis technique: Markov chain for total jobs in system 01K2K+22K+12K2K3K/2 λ λλλλ λ ? = mean departure rate given 3K/2 jobs

15 N = 3K/2 Poisson( λ ) K/2 Rate = K/2 Rate = K Departure rate = K–1 (not K) Finding the O(1) fluctuations critical to analysis O(1) idle queues

16 N = (1+ γ )K (0 <γ< 1) Poisson( λ ) γKγK (1- γ )K Rate = (1- γ )K Rate = K Departure rate = K–(1- γ )/ γ (not K) Finding the O(1) fluctuations critical to analysis O(1) idle queues

17 K Poisson( λ ) Analysis technique: Markov chain for total jobs in system 01K2K+22K+12K2K3K/2 λ λλλλ λ KK K-1 Asymptotically negligible probability mass First closed-form approx for JSQ!

K 1 = α 1 K K 2 = α 2 K Poisson( λ ) GOAL Analysis of policies for heterogeneous servers Analysis of JSQ for homogeneous server

19 OPT policy maximize departure rate for each N (preemptively) send jobs to slow servers even when they have 1 job and all fast servers have > 1 Smart-JSQ is optimal in many-servers K 1 = α 1 K K 2 = α 2 K Poisson( λ )

20 Outline Many-servers limit: Simulation Results Effect of K Effect of arrival rate ( λ ) Effect of degree of heterogeneity Light-traffic regimeHeavy-traffic regime Partial characterization of the optimal policy Complete characterization of optimal policies First asymptotic approximations

21 Smart-JSQ

22 MER Smart-JSQ

23 MER Smart-JSQ HYBRID

24 MER Smart-JSQ HYBRID

25 Smart-JSQ

26 MER Smart-JSQ

27 MER Smart-JSQ HYBRID

A new many-servers heavy-traffic scaling to analyze load balancing policies First closed-form approx of load balancing heuristics Choosing the right load balancer Few servers, Small load, High heterogeneity HYBRID Many servers, High load, Low heterogeneity smart-JSQ 28

29 MER Smart-JSQ HYBRID

30 MER Smart-JSQ HYBRID

31 MER Smart-JSQ HYBRID