Supersymmetric Dark Matter

Slides:



Advertisements
Similar presentations
Kiwoon Choi PQ-invariant multi-singlet NMSSM
Advertisements

Joe Sato (Saitama University ) Collaborators Satoru Kaneko,Takashi Shimomura, Masato Yamanaka,Oscar Vives Physical review D 78, (2008) arXiv:1002.????
Outlook: Higgs, SUSY, flavor Ken-ichi Hikasa (Tohoku U.) Fourth Workshop, Origin of Mass and SUSY March 8, 2006, Epochal Tsukuba.
Intro to neutralino dark matter Pearl Sandick University of Minnesota.
Neutralino Dark Matter in Light Higgs Boson Scenario Masaki Asano (ICRR, University of Tokyo) Collaborator S. Matsumoto (Toyama Univ.) M. Senami (Kyoto.
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
Little Higgs Dark Matter and Its Implications at the LHC Chuan-Ren Chen (NTNU) XS 2014, 5/6/2014 In collaboration with H-C Tsai, M-C Lee, [hep-ph]
WIMPs and superWIMPs Jonathan Feng UC Irvine SUGRA20 18 March 2003.
Minimal Supersymmetric Standard Model (MSSM) SM: 28 bosonic d.o.f. & 90 (96) fermionic d.o.f. SUSY: # of fermions = # of bosonsN=1 SUSY: There are no particles.
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine Arlington LC Workshop January 2003.
20 June 07Feng 1 MICROPHYSICS AND THE DARK UNIVERSE Jonathan Feng University of California, Irvine CAP Congress 20 June 2007.
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine American Linear Collider Physics Group Seminar 20 February 2003.
Mia Schelke, Ph.D. Student The University of Stockholm, Sweden Cosmo 03.
Big Questions, L(H)C Answers Jonathan Feng UC Irvine LC/LHC Workshop, Fermilab 13 December 2002.
Constrained MSSM Unification of the gauge couplings Radiative EW Symmetry Breaking Heavy quark and lepton masses Rare decays (b -> sγ, b->μμ) Anomalous.
SUSY Dark Matter Collider – direct – indirect search bridge. Sabine Kraml Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France ● 43. Rencontres.
Center for theoretical Physics at BUE
The Dark Side of the Universe What is dark matter? Who cares?
Flavour and CP Violation in Supersymmetric Models John Ellis Theory Division, LHCb, Jan. 27 th, 2009.
Supersymmetric Models with 125 GeV Higgs Masahiro Yamaguchi (Tohoku University) 17 th Lomonosov Conference on Elementary Particle Physics Moscow State.
The Universe  What do we know about it  age: 14.6 billion years  Evolved from Big Bang  chemical composition  Structures.
Direct and Indirect Dark Matter Detection in Models with a Well-Tempered Neutralino Eun-Kyung Park Florida State University in collaboration with H. Baer.
Neutralino Dark Matter in Light Higgs Boson Scenario (LHS) The scenario is consistent with  particle physics experiments Particle mass b → sγ Bs →μ +
DARK MATTER CANDIDATES Cody Carr, Minh Nguyen December 9 th, 2014.
Dark matter in split extended supersymmetry in collaboration with M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) Alessio Provenza (SISSA/ISAS) Newport Beach.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
Right-handed sneutrino as cold dark matter of the universe Takehiko Asaka (EPFL  Niigata University) Refs: with Ishiwata and Moroi Phys.Rev.D73:061301,2006.
Theoretical Issues in Astro Particle Physics J.W. van Holten April 26, 2004.
SUSY in the sky: supersymmetric dark matter David G. Cerdeño Institute for Particle Physics Phenomenology Based on works with S.Baek, K.Y.Choi, C.Hugonie,
22 December 2006Masters Defense Texas A&M University1 Adam Aurisano In Collaboration with Richard Arnowitt, Bhaskar Dutta, Teruki Kamon, Nikolay Kolev*,
Overview of Supersymmetry and Dark Matter
CONSTRAINED MSSM AND RECENT ASTROPHYSICAL DATA Alexey Gladyshev (JINR, Dubna & ITEP, Moscow) SEMINAR AT KEK THEORY GROUP November 1, 2004.
The Search For Supersymmetry Liam Malone and Matthew French.
The Standard Model of the elementary particles and their interactions
Jonathan Nistor Purdue University 1.  A symmetry relating elementary particles together in pairs whose respective spins differ by half a unit  superpartners.
J. KalinowskiDark matter in U(1) extended SUSY1 Dark matter in the U(1) extended supersymmetric model Jan Kalinowski S.Y. Choi, H.E. Haber and P.M. Zerwas,
Dirac neutrino dark matter G. Bélanger LAPTH- Annecy based on G. B, A.Pukhov, G. Servant CERN-PH-TH/
Klein Particles in the Universe Oscar Klein Memorial Lecture 2008 Helen R. Quinn SLAC.
Phys. Lett. B646 (2007) 34, (hep-ph/ ) Non-perturbative effect on thermal relic abundance of dark matter Masato Senami (University of Tokyo, ICRR)
Xenon100 collaboration gives a stringent constraint on spin-independent elastic WIMP-nucleon scattering cross section. Ton-scale detectors for direct detection.
Origin of large At in the MSSM with extra vector-like matters
The Case of Light Neutralino Dark Matter
A Solution to the Li Problem by the Long Lived Stau
Generating Neutrino Mass & Electroweak Scale Radiatively
Lecture II: Dark Matter Candidates and WIMPs
Dark Matter Phenomenology of the GUT-less CMSSM
Physics Overview Yasuhiro Okada (KEK)
Shufang Su • U. of Arizona
John Kelley IceCube Journal Club 27 February 2008
Shufang Su • U. of Arizona
LHC The Challenge Dmitri Kazakov JINR / ITEP
MSSM4G: MOTIVATIONS AND ALLOWED REGIONS
Probing Supersymmetry with Neutral Current Scattering Experiments
D. P. Roy Homi Bhabha Centre for Science Education
Shufang Su • U. of Arizona
Higgs and SUSY at future colliders
Search for Supersymmetry
SUSY Dark Matter in light of CDMS/XENON Results
Thermal sneutrino dark matter in an inverse seesaw model
Shufang Su • U. of Arizona
Shufang Su • U. of Arizona
Testing the Standard Model and Beyond
Shufang Su • U. of Arizona
Physics Overview Yasuhiro Okada (KEK)
Analysis of enhanced effects in MSSM from the GUT scale
Physics Overview Yasuhiro Okada (KEK)
SUSY SEARCHES WITH ATLAS
Institute of Theoretical Physics, CAS
How Heavy can Neutralino Dark Matter be?
Can new Higgs boson be Dark Matter Candidate in the Economical Model
Presentation transcript:

Supersymmetric Dark Matter Shufang Su • U. of Arizona K. Olive, astro-ph/0301505

Composition of the Universe - We know how much, but no idea what it is. » 0.7 Dark Energy , quintenssence,… » 0.02 baryon 0.1 - 0.3 Non-baryonic dark matter Baryonic dark matter (lum» 0.003)  Hot dark matter: Neutrino  Cold dark matter WIMP axions  Other possibilities self-annihilating DM self-interacting DM warm DM fuzzy CDM … S. Su Dark Matter

WIMP CDM requirements  Stable lifetime ¸ 10 Gyr  Non-baryonic  Neutral: color (strong interaction) and electric strong upper limits on the abundance of anomalously heavy isotopes  Cold: non-relativistic  Yield correct density WIMP weak interacting:  » 0.01, mW » 100 GeV   » 0.1 S. Su Dark Matter

Not for cosmology observations Standard Model - I II III Quarks u c t d s b SM is a very successful theoretical framework that describes all experimental observations to date Leptons e   e   Not for cosmology observations Dark Matter Cosmology constant Baryon asymmetry … Gauge boson (force carrier)  W§,Z g electro -magnetic » 0.01 weak » 0.03 strong » 0.1 =g2/4 Higgs H S. Su Dark Matter

Standard Model No good candidates for CDM in SM I II III Quarks u c t - I II III Quarks u c t d s b CDM requirements  Stable Leptons e   e    Non-baryonic  Neutral  Cold  Correct density Gauge boson (force carrier)  W§,Z g Higgs H No good candidates for CDM in SM S. Su Dark Matter

Supersymmetry  SM is an effective theory below some energy scale  -  SM is an effective theory below some energy scale  Hierarchy problem: MEW100 GeV , Mplank 1019 GeV ? Naturalness problem: mass of a fundamental scalar (like Higgs) receive huge quantum corrections: (mH2)physical  (mH2)0 + 2 (100 GeV)2 H - 2 H -(1019 GeV)2 precise cancellation up to 1034 order (1019 GeV)2  Supersymmetry SM particle superpartner Spin differ by 1/2 Naturalness  ms-particle » O(100-1000) GeV S. Su Dark Matter

Gauge Coupling Unification - SM SUSY S. Su Dark Matter

Minimal Supersymmetric Standard Model (MSSM) - Spin differ by 1/2 SM particle superpartner » » » Squarks u c t d s b CDM requirements » » »  Stable » » » sleptons e   e    Non-baryonic  Neutral » » »  Cold » » » » m > 45 GeV Gauginos B0 W§,W0 g  Correct density » » » » weak interaction Higgsino (Hu+,Hu0) , (Hd0, Hd-) S. Su Dark Matter

MSSM DM Candidates Possible DM candidates  Stable ? - Possible DM candidates sneutrino  neutralino (B0,W0,Hd0,Hu0) ! i0 ~ ~ ~ ~ ~  Stable ? General MSSM, including B,L-violating operators - dangerous  introduce proton decay p ! K+ R-parity SM particle: even + superparticle: odd - no proton decay lightest supersymmetric particle (LSP) stable LSP  SM particle, LSP  super particle Good candidate of DM: could be  or 10 d u P K+ ~ s -  odd ~ S. Su Dark Matter

Sneutrino Dark Matter rapid annihilation, hAvi large - ~  Z /l/q ~   /l ~  W/Z f rapid annihilation, hAvi large light sneutrino: 45-200 GeV  low abundance heavy sneutrino: 550 – 2300 GeV  0.1    1 disfavored on theoretical ground excluded by nuclear recoil direct detection: m ¸ 20 TeV ~ Sneutrino CDM in MSSM is excluded S. Su Dark Matter

Neutralino ~ ~ ~ ~ B0, W0, Hd0, Hu0 Properties fermion neutral - ~ ~ ~ ~ B0, W0, Hd0, Hu0 Superpartner of gauge bosons Superpartner of Higgs bosons Properties fermion neutral heavy: m > 45 GeV (B0, W0, Hd0, Hu0)  neutralinos i0, i=1…4 mass eigenstates Interactions: weak interacting / gauge coupling ~ ~ ~ ~ f  ~ H  W,Z  S. Su Dark Matter

Lightest Neutralino CDM - Now let us focus on neutralino as a candidate for CDM Neutralino mass matrix Input parameter: M1, M2, , tan i0=i B0+ i W0+i Hd0 +i Hu0 , m1 m2  m3  m4 , 1 being LSP ~ For small mixing: mZ ¿ M1, M2,  M1< M2, ||: B0 Bino-LSP M2< M1, ||: W0 Wino-LSP ||< M1, M2: Hu0 § Hd0 Higgsino-LSP ~ S. Su Dark Matter

MSSM Parameters Interactions involve the whole set of MSSM parameters - Interactions involve the whole set of MSSM parameters > 100 new parameters (SM: 19 parameters) other experimental constraints LSP Simplest assumption (unification) CMSSM (constrained MSSM) m0 M1/2 A0 tan sign  GUT scale ||,b replaced by mZ, tan common scalar mass common gaugino mass common trilinear scalar Low energy MSSM parameters  S. Su Dark Matter

Relic Density Thermal relic density Decoupling: >H =nhvi ¼ H - Thermal relic density Decoupling: =nhvi ¼ H >H  ! X+Y early time n ¼ neq late time (n/s)today » (n/s)decoupling at freeze-out T » m/20 <H n/s Approximately, relic / 1/hvi S. Su Dark Matter

Neutralino Relic Density (I) - 10 f ~ 10 + W t-channel (dominate) absent for B0 ~ ~ 10 Z,H /l/q s-channel Important near pole m » mZ,H/2 ~ 10 Relic Density: =hAvi n » H <v> = a+bx+… x=T/m Special cases: Co-annihilation: mLSP ¼ mNLSP Annihilation near a pole: e.g. m » mZ,H/2 S. Su Dark Matter

Neutralino Relic Density (II) - No EWSB 0.1  h2  0.3 m » mA.H/2 CMSSM Focus point m=mZ,h/2 Co-annihilation 10-l ~ bulk stau LSP S. Su Dark Matter

Phenomenological Constraints - Other constraints Higgs mass mh > 114.4 GeV b ! s  : » 10-4 exclude small m1/2 important for  <0 muon g-2 th-exp=(26 § 16)£ 10-10 b s  muon g-2 me=99GeV ~ m= mZ,h/2 region already excluded b ! s  S. Su Dark Matter

Bulk region and -l coannihilation region ~ - m » m +X ! +Y in equilibrium  decays into  eventually Co-annihilation:, ,  ~ co-annihilation mh bulk if ignore co-annihilation hvi » 1/m2,  / m/hvi  upper bound on m mB » 200 GeV ~ S. Su Dark Matter

hvi » 1/(4m2 – mA,H2)2 too big Funnel-Like Region - ~ 10 A,H /l/q Large tan : m » mA,H/2 A,H: heavy Higgses SM: h0 MSSM: h0,H0,A,H§  / 1/hvi hvi » 1/(4m2 – mA,H2)2 too big   too small S. Su Dark Matter

Focus Point Region (100 GeV)2 conventional wisdom focus point - (100 GeV)2 conventional wisdom focus point naturalness  m0, M1/2, ||  TeV m0 a few TeV , natural m0 term negligible m0 term not negligible || À M1 || » M1 DM Bino-like: 10 ¼ B0 DM Bino-Higgsino mixture Co-annihilation, funnel and focus point regions are very fine-tuned Highly depend on the other input parameters ~ S. Su Dark Matter

Direct Detection of DM - Direct detection via neutralino-nucleon scattering DM low velocity, non-relativistic Spin-dependent:  i  q i q Mspin / pq h Spi/ JN + nq h Sni/ JN Spin-independent:   q mq q / mW Mscalar / Z fp+ (A-Z) fn - Bino DM: no diagram 1 require small m0 Bino-Higgsino DM large m0 detectable ,Z / 1/mq2 ~ S. Su Dark Matter

Neutralino-Nucleon Scattering (II) 2 £ 10-10 pb  SI  6 £ 10-8 pb 2 £ 10-7 pb  SD  10-5 pb S. Su Dark Matter

DAMA and CDMS - CDMS DAMA DAMA finds signal in annual modulation as earth passes through WIMP wind CDMS and Edelweiss excludes much of the favored region Edelweiss NUHM CMSSM pb = 10-36 cm2 S. Su Dark Matter

Indirect Detection - DM annihilation products from the Sun, Earth, galaxy require hard annihilation products (not good for Bino DM)  from the core of the Earth and Sun e+ from the local solar neighborhood  from the Galactic center   Under-ice, underwater neutrino telescopes Anti-matter/ anti-particle experiments Atmospheric Cherenkov telescopes, space-based  ray detectors S. Su Dark Matter

Comparison of pre-LHC SUSY Searches DM searches are complementary to collider searches When combined, entire cosmologically attractive region will be explored before LHC ( » 2007 ) S. Su Dark Matter

Conclusion DM is the one of the strongest phenomenological - DM is the one of the strongest phenomenological motivation for new physics Fruitful interplay of particle physics, cosmology, and astrophysics A fascinating time: we know how much, but have no idea what it is Many, many experiments MSSM neutralino LSP is a good candidate for CDM In SUSY, DM searches are promising, highly complementary to collider searches S. Su Dark Matter