Artificial Intelligence

Slides:



Advertisements
Similar presentations
Artificial Intelligence
Advertisements

CSCI 4800 ARTIFICIAL INTELLIGENCE
ARTIFICIAL INTELLIGENCE
Additional Topics ARTIFICIAL INTELLIGENCE
Artificial Intelligence
Artificial Intelligence An Introductory Course. Outline 1.Introduction 2.Problems and Search 3.Knowledge Representation 4.Advanced Topics.
AI 授課教師:顏士淨 2013/09/12 1. Part I & Part II 2  Part I Artificial Intelligence 1 Introduction 2 Intelligent Agents Part II Problem Solving 3 Solving Problems.
Artificial Intelligence Computational Intelligence Alien Intelligence? Summer 2004 Dennis Kibler.
Artificial Intelligence A Modern Approach Dennis Kibler.
ICS 101 Fall 2011 Introduction to Artificial Intelligence Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa.
Introduction to Artificial Intelligence Ruth Bergman Fall 2004.
Introduction to Artificial Intelligence CSE 473 Winter 1999.
Introduction to Artificial Intelligence ITK 340, Spring 2010.
INSTRUCTOR: DR. XENIA MOUNTROUIDOU CS CS Artificial Intelligence.
ARTIFICIAL INTELLIGENCE Introduction: Chapter Textbook: S. Russell and P. Norvig Artificial Intelligence: A Modern Approach Prentice Hall, 2003,
Artificial Intelligence
ARTIFICIAL INTELLIGENCE
Introduction to AI, H. Feili 1 Introduction to Artificial Intelligence LECTURE 1: Introduction What is AI? Foundations of AI The.
1 Artificial Intelligence An Introductory Course.
CPSC 171 Artificial Intelligence Read Chapter 14.
1 Artificial Intelligence An Introductory Course.
FOUNDATIONS OF ARTIFICIAL INTELLIGENCE Introduction: Chapter 1.
ARTIFICIAL INTELLIGENCE Introduction: Chapter 1. Outline Course overview What is AI? A brief history The state of the art.
CSW 4701 AI Spring 2013 Introduction: Chapter Course home page: Textbook: S. Russell and P. Norvig.
1 AI and Agents CS 171/271 (Chapters 1 and 2) Some text and images in these slides were drawn from Russel & Norvig’s published material.
ARTIFICIAL INTELLIGENCE [INTELLIGENT AGENTS PARADIGM]
CISC4/681 Introduction to Artificial Intelligence1 Introduction – Artificial Intelligence a Modern Approach Russell and Norvig: 1.
Introduction (Chapter 1) CPSC 386 Artificial Intelligence Ellen Walker Hiram College.
Introduction: Chapter 1
Artificial Intelligence Lecture No. 3
Lecture 1 Note: Some slides and/or pictures are adapted from Lecture slides / Books of Dr Zafar Alvi. Text Book - Aritificial Intelligence Illuminated.
ICS 101 Fall 2011 Introduction to Artificial Intelligence Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa.
Artificial Intelligence: An Introduction Definition of AI Foundations of AI History of AI Advanced Techniques.
CSC4444: Artificial Intelligence Fall 2011 Dr. Jianhua Chen Slides adapted from those on the textbook website.
A RTIFICIAL I NTELLIGENCE Introduction 3 October
If the human brain were so simple that we could understand it, we would be so simple that we couldn't. —Emerson M. Pugh.
Artificial Intelligence CS 363 Kawther Abas Lecture 1 Introduction 5/4/1435.
1 Artificial Intelligence GholamReza GhassemSani Fall 1383.
Introduction to Artificial Intelligence and Soft Computing
1 CS 2710, ISSP 2610 Foundations of Artificial Intelligence introduction.
Introduction to Artificial Intelligence Mitch Marcus CIS391 Fall, 2008.
Lecture 1: Introduction Heshaam Faili University of Tehran What is AI? Foundations of AI The History of AI State of the Art.
Artificial Intelligence
Lecture 1 – AI Background Dr. Muhammad Adnan Hashmi 1.
Artificial Intelligence IES 503 Asst. Prof. Dr. Senem Kumova Metin.
University of Kurdistan Artificial Intelligence Methods (AIM) Lecturer: Kaveh Mollazade, Ph.D. Department of Biosystems Engineering, Faculty of Agriculture,
Chapter 1 Artificial Intelligence Overview Instructor: Haris Shahzad Artificial Intelligence CS-402.
FOUNDATIONS OF ARTIFICIAL INTELLIGENCE
Artificial Intelligence Lecture 2 Department of Computer Science, International Islamic University Islamabad, Pakistan.
Princess Nora University Artificial Intelligence CS 461 Level 8 1.
A Brief History of AI Fall 2013 COMP3710 Artificial Intelligence Computing Science Thompson Rivers University.
1 Introduction to Artificial Intelligence CSE 415 Winter 2006.
1 Artificial Intelligence & Prolog Programming CSL 302.
Artificial Intelligence Lecture 1. Introduction. Course Outline The course consists of:  15 lectures slots (may use some for tutorials);  tutorial exercises;
CSC 450 Artificial Intelligence. W HAT IS AI? Thinking humanlyThinking rationally Acting humanlyActing rationally Revision!...
Artificial Intelligence
CSC 290 Introduction to Artificial Intelligence
Introduction to Artificial Intelligence
A I (Artificial Intelligence)
Introduction to Artificial Intelligence
Introduction Artificial Intelligent.
Introduction to Artificial Intelligence and Soft Computing
Intelligence Are the things shown below, Intelligent?
Systems that THINK Like Humans
Artificial Intelligence Lecture 2: Foundation of Artificial Intelligence By: Nur Uddin, Ph.D.
AI and Agents CS 171/271 (Chapters 1 and 2)
EA C461 – Artificial Intelligence Introduction
CS 404 Artificial Intelligence
AI Application Session 12
Presentation transcript:

Artificial Intelligence An Introductory Course

Outline Introduction Problems and Search Knowledge Representation Advanced Topics - Game Playing - Uncertainty and Imprecision - Planning - Machine Learning

References Artificial Intelligence (1991) Elaine Rich & Kevin Knight, Second Ed, Tata McGraw Hill Decision Support Systems and Intelligent Systems Turban and Aronson, Sixth Ed, PHI

Introduction What is AI? The foundations of AI A brief history of AI The state of the art Introductory problems

What is AI?

What is AI? Intelligence: “ability to learn, understand and think” (Oxford dictionary) AI is the study of how to make computers make things which at the moment people do better. Examples: Speech recognition, Smell, Face, Object, Intuition, Inferencing, Learning new skills, Decision making, Abstract thinking

What is AI? Thinking humanly Thinking rationally Acting humanly Acting rationally

Acting Humanly: The Turing Test Alan Turing (1912-1954) “Computing Machinery and Intelligence” (1950) Imitation Game Human Human Interrogator AI System

Acting Humanly: The Turing Test Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes. Anticipated all major arguments against AI in following 50 years. Suggested major components of AI: knowledge, reasoning, language, understanding, learning.

Thinking Humanly: Cognitive Modelling Not content to have a program correctly solving a problem. More concerned with comparing its reasoning steps to traces of human solving the same problem. Requires testable theories of the workings of the human mind: cognitive science.

Thinking Rationally: Laws of Thought Aristotle was one of the first to attempt to codify “right thinking”, i.e., irrefutable reasoning processes. Formal logic provides a precise notation and rules for representing and reasoning with all kinds of things in the world. Obstacles: - Informal knowledge representation. - Computational complexity and resources.

Acting Rationally Acting so as to achieve one’s goals, given one’s beliefs. Does not necessarily involve thinking. Advantages: - More general than the “laws of thought” approach. - More amenable to scientific development than human- based approaches.

The Foundations of AI Philosophy (423 BC - present): - Logic, methods of reasoning. - Mind as a physical system. - Foundations of learning, language, and rationality. Mathematics (c.800 - present): - Formal representation and proof. - Algorithms, computation, decidability, tractability. - Probability.

The Foundations of AI Psychology (1879 - present): - Adaptation. - Phenomena of perception and motor control. - Experimental techniques. Linguistics (1957 - present): - Knowledge representation. - Grammar.

A Brief History of AI The gestation of AI (1943 - 1956): - 1943: McCulloch & Pitts: Boolean circuit model of brain. - 1950: Turing’s “Computing Machinery and Intelligence”. - 1956: McCarthy’s name “Artificial Intelligence” adopted. Early enthusiasm, great expectations (1952 - 1969): - Early successful AI programs: Samuel’s checkers, Newell & Simon’s Logic Theorist, Gelernter’s Geometry Theorem Prover. - Robinson’s complete algorithm for logical reasoning.

A Brief History of AI A dose of reality (1966 - 1974): - AI discovered computational complexity. - Neural network research almost disappeared after Minsky & Papert’s book in 1969. Knowledge-based systems (1969 - 1979): - 1969: DENDRAL by Buchanan et al.. - 1976: MYCIN by Shortliffle. - 1979: PROSPECTOR by Duda et al..

A Brief History of AI AI becomes an industry (1980 - 1988): - Expert systems industry booms. - 1981: Japan’s 10-year Fifth Generation project. The return of NNs and novel AI (1986 - present): - Mid 80’s: Back-propagation learning algorithm reinvented. - Expert systems industry busts. - 1988: Resurgence of probability. - 1988: Novel AI (ALife, GAs, Soft Computing, …). - 1995: Agents everywhere. - 2003: Human-level AI back on the agenda.

Task Domains of AI Mundane Tasks: Formal Tasks Expert Tasks: Perception Vision Speech Natural Languages Understanding Generation Translation Common sense reasoning Robot Control Formal Tasks Games : chess, checkers etc Mathematics: Geometry, logic,Proving properties of programs Expert Tasks: Engineering ( Design, Fault finding, Manufacturing planning) Scientific Analysis Medical Diagnosis Financial Analysis

AI Technique Intelligence requires Knowledge Knowledge posesses less desirable properties such as: Voluminous Hard to characterize accurately Constantly changing Differs from data that can be used AI technique is a method that exploits knowledge that should be represented in such a way that: Knowledge captures generalization It can be understood by people who must provide it It can be easily modified to correct errors. It can be used in variety of situations

The State of the Art Computer beats human in a chess game. Computer-human conversation using speech recognition. Expert system controls a spacecraft. Robot can walk on stairs and hold a cup of water. Language translation for webpages. Home appliances use fuzzy logic. ......

Tic Tac Toe Three programs are presented : Series increase Their complexity Use of generalization Clarity of their knowledge Extensability of their approach

Introductory Problem: Tic-Tac-Toe X o

Introductory Problem: Tic-Tac-Toe Program 1: Data Structures: Board: 9 element vector representing the board, with 1-9 for each square. An element contains the value 0 if it is blank, 1 if it is filled by X, or 2 if it is filled with a O Movetable: A large vector of 19,683 elements ( 3^9), each element is 9-element vector. Algorithm: 1. View the vector as a ternary number. Convert it to a decimal number. 2. Use the computed number as an index into Move-Table and access the vector stored there. 3. Set the new board to that vector.

Introductory Problem: Tic-Tac-Toe Comments: This program is very efficient in time. 1. A lot of space to store the Move-Table. 2. A lot of work to specify all the entries in the Move-Table. 3. Difficult to extend.

Introductory Problem: Tic-Tac-Toe 1 2 3 4 5 6 7 8 9

Introductory Problem: Tic-Tac-Toe Program 2: Data Structure: A nine element vector representing the board. But instead of using 0,1 and 2 in each element, we store 2 for blank, 3 for X and 5 for O Functions: Make2: returns 5 if the center sqaure is blank. Else any other balnk sq Posswin(p): Returns 0 if the player p cannot win on his next move; otherwise it returns the number of the square that constitutes a winning move. If the product is 18 (3x3x2), then X can win. If the product is 50 ( 5x5x2) then O can win. Go(n): Makes a move in the square n Strategy: Turn = 1 Go(1) Turn = 2 If Board[5] is blank, Go(5), else Go(1) Turn = 3 If Board[9] is blank, Go(9), else Go(3) Turn = 4 If Posswin(X)  0, then Go(Posswin(X)) .......

Introductory Problem: Tic-Tac-Toe Comments: 1. Not efficient in time, as it has to check several conditions before making each move. 2. Easier to understand the program’s strategy. 3. Hard to generalize.

Introductory Problem: Tic-Tac-Toe 8 3 4 1 5 9 6 7 2 15 - (8 + 5)

Introductory Problem: Tic-Tac-Toe Comments: 1. Checking for a possible win is quicker. 2. Human finds the row-scan approach easier, while computer finds the number-counting approach more efficient.

Introductory Problem: Tic-Tac-Toe Program 3: 1. If it is a win, give it the highest rating. 2. Otherwise, consider all the moves the opponent could make next. Assume the opponent will make the move that is worst for us. Assign the rating of that move to the current node. 3. The best node is then the one with the highest rating.

Introductory Problem: Tic-Tac-Toe Comments: 1. Require much more time to consider all possible moves. 2. Could be extended to handle more complicated games.

Exercises 1. Characterize the definitions of AI: "The exciting new effort to make computers think ... machines with minds, in the full and literal senses" (Haugeland, 1985) "[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning ..." (Bellman, 1978)

Exercises "The study of mental faculties, through the use of computational models" (Charniak and McDermott, 1985) "The study of the computations that make it possible to perceive, reason, and act" (Winston, 1992) "The art of creating machines that perform functions that require intelligence when performed by people" (Kurzweil, 1990)

Exercises "The study of how to make computers do things at which, at the moment, people are better" (Rich and Knight, 1991) "A field of study that seeks to explain and emulate intelligent behavior in terms of computationl processes" (Schalkoff, 1990) "The branch of computer science that is concerned with the automation of intelligent behaviour" (Luger and Stubblefield, 1993)

Exercises "A collection of algorithms that are computationally tractable, adequate approximations of intractabiliy specified problems" (Partridge, 1991) "The enterprise of constructing a physical symbol system that can reliably pass the Turing test" (Ginsberge, 1993) "The f ield of computer science that studies how machines can be made to act intelligently" (Jackson, 1986)