OFDM System Performance

Slides:



Advertisements
Similar presentations
Doc.: IEEE /389r1 Submission November 2000 Steve Halford and Mark WebsterSlide 1 Overview of OFDM for a High Rate Extension Steve Halford Mark.
Advertisements

Doc: IEEE r0 Submission May 2001 S. Halford, et al Intersil Corporation Slide 1 Minor Technical Change for TGg Steve Halford Mark Webster Jim.
Doc.: IEEE /286r0 Submission May 2001 Shoemake and Batra, TI Range vs. Rate Comparison of Remaining IEEE g Proposals: PBCC and CCK-OFDM.
Anatomy of Radio LAN Onno W. Purbo
The Impact of Channel Estimation Errors on Space-Time Block Codes Presentation for Virginia Tech Symposium on Wireless Personal Communications M. C. Valenti.
– Wireless PHY and MAC Stallings Types of Infrared FHSS (frequency hopping spread spectrum) DSSS (direct sequence.
Doc.: IEEE /282r1 Submission September 2000 S. Halford, K. Halford, and M. WebsterSlide 1 Evaluating the Performance of HRb Proposals in the Presence.
Doc.: IEEE /396 Submission November 2000 S. Halford, P. Chiuchiolo, G. Dooley, and M. WebsterSlide 1 Implementation and Complexity Issues for.
Doc.: IEEE /206 Submission Slide 1 July 2000 Loraine, Micro Linear Corp. HRb performance requirements: PHY Overhead & Data Rate July 2000 Jerry.
Doc.: n-proposal-statistical-channel-error-model.ppt Submission Jan 2004 UCLA - STMicroelectronics, Inc.Slide 1 Proposal for Statistical.
IEEE802.11a 指導教授 : 高永安 學生 : 陳穎俊. PLCP preamble.
Doc.: IEEE /089 Submission January 2002 Steve Halford, IntersilSlide 1 Maximum Received Power for g Steve Halford Mark Webster.
Doc.: IEEE /072 Submission May 2000 Mark Webster and Karen Halford, Intersil Corporation Slide 1 Market Acceptability Throughput Issues for HRb.
Doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide 1 OFDM System Performance Karen Halford, Steve Halford.
Doc.: IEEE /390 Submission November 2000 Mark Webster and Steve Halford, IntersilSlide 1 Reuse of b Preambles with HRb OFDM Mark Webster.
Matthew B. Shoemake, Ph.D. Anuj Batra, Ph.D.
Mobile Radio Propagation - Small-Scale Fading and Multipath
doc.: IEEE <doc#>
Proposal for Statistical Channel Error Model
David S. L. Wei Joint Work with Alex Chia-Chun Hsu and C.-C. Jay Kuo
Channelization for HRb OFDM
CCA Sensitivity Date: September 2017
Lecture 27 WLAN Part II Dr. Ghalib A. Shah
Advanced Wireless Networks
Nov 2004 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Impact of MB-OFDM and DS-UWB Interference on.
A Rate-Adaptive MAC Protocol for Multi-Hop Wireless Networks
Karen Halford, Ph.D. and Mark Webster
Some Coexistence Issues in g proposals: Bluetooth Impacts
Blank GI choices under Timing Errors
doc.: IEEE <doc#>
Blank GI choices under Timing Errors
doc.: IEEE <doc#>
Evaluating Channel Estimation Sensitivity
doc.: IEEE /304 Mark Webster Steve Halford
Comparison of IEEE g Proposals: PBCC, OFDM & MBCK
Range & Rate of CCK-OFDM
Signal Quality Measurements
Jim Zyren Mark Webster Steve Halford Intersil Corporation
Complex Beacon Pros and Cons
Backwards compatibility
Enhanced MAC proposal for high throughput.
MAC Calibration Results
MAC Calibration Results
On The Use Of Reed Solomon Codes For n
UWB Receiver Algorithm
WUR Dual SYNC Design Follow-up: SYNC bit Duration
Performance Evaluation of an Integrated-service IEEE Network
Chen Zhifeng Electrical and Computer Engineering University of Florida
CCK-OFDM Closing Remarks
6 July, 2009 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: FPP SUN Simulation Results – Redpine Signals.
Source: [Yafei Tian, Chenyang Yang, Liang Li ]
Month Year doc.: IEEE yy/xxxxr0 January 2008
CCK-OFDM Summary Steve Halford Mark Webster Jim Zyren Paul Chiuchiolo
May 203 doc.: IEEE r1 May 2003 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [TG3a Comparison.
Wireless Mesh Networks
Date Submitted: [March, 2007 ]
August 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability of k] Date Submitted:
doc.: IEEE <doc#>
Spectral Control Issues for TGg
GCM Communications Technology
CCA Sensitivity Date: September 2017
Date Submitted: [30−Aug−2007]
6 July, 2009 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: FPP SUN Simulation Results – Redpine Signals.
Sean Coffey, Ph.D., Chris Heegard, Ph.D.
Duration in L-SIG Date: Authors: May 2010 Month Year
Technical Feasibility of OFDM for HRb
Technical Feasibility of OFDM for HRb
Multi-rate Medium Access Control
Technical Feasibility of CCK Extensions for HRb
May 203 doc.: IEEE r2 May 2003 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [TG3a Comparison.
Presentation transcript:

OFDM System Performance November 2000 OFDM System Performance Karen Halford, Steve Halford and Mark Webster K. Halford, S. Halford and M. Webster

Outline of Proposal Presentations November 2000 Outline of Proposal Presentations TGg Regulatory Approval Plan Speaker: Jim Zyren Overview of OFDM for High Rate Speaker: Steve Halford Reuse of 802.11b Preambles with OFDM Speaker: Mark Webster Ultra-short Preamble with HRb OFDM Speaker: Mark Webster OFDM System Performance Speaker: Steve Halford Power Am Effects for HRb OFDM Speaker: Mark Webster Channelization for HRb OFDM Speaker: Mark Webster Phase Noise Sensitivity for HRb OFDM Speaker: Mark Webster Implementation and Complexity Issues for OFDM Speaker: Steve Halford Why OFDM for the High Rate 802.11b Extension? Speaker: Jim Zyren K. Halford, S. Halford and M. Webster

Outline of Presentation November 2000 Outline of Presentation 5.1 AWGN Performance 5.2 Rayleigh Fading Performance 5.3 Multipath Performance 5.3.1 Exponential Channel with Flat Fading 5.3.2 Exponential Channel without Flat Fading (Normalized) 5.3.3 PER sweeps from 1% to 10 % 5.4 Throughput Performance 5.5 Performance Against CW Jammer (FCC15.247 Test) K. Halford, S. Halford and M. Webster

5.1 AWGN Performance: 100 Byte Packets November 2000 5.1 AWGN Performance: 100 Byte Packets K. Halford, S. Halford and M. Webster

5.1 AWGN Performance: 1000 Byte Packets November 2000 5.1 AWGN Performance: 1000 Byte Packets K. Halford, S. Halford and M. Webster

5.1 AWGN Performance: 2346 Byte Packets November 2000 5.1 AWGN Performance: 2346 Byte Packets K. Halford, S. Halford and M. Webster

5.1 AWGN Performance: 1% and 10 % PER for 1000 Byte Packets November 2000 5.1 AWGN Performance: 1% and 10 % PER for 1000 Byte Packets Eb/No required for 1 % PER Eb/No required for 10 % PER K. Halford, S. Halford and M. Webster

5.2 Rayleigh Fading Performance: Block Diagram November 2000 5.2 Rayleigh Fading Performance: Block Diagram Calculate Noise Power (N0) Generate Noise Measure energy per bit Measure Packet Error Rate Transmitter Model Packet Error Rate x + Receiver Model Rayleigh Coefficient Packet Length Data Rate K. Halford, S. Halford and M. Webster

5.2 Rayleigh Fading Performance: 1000 Byte Packets November 2000 5.2 Rayleigh Fading Performance: 1000 Byte Packets K. Halford, S. Halford and M. Webster

5.2 Rayleigh Fading Performance: 1% and 10 % PER for 1000 Byte Packets November 2000 5.2 Rayleigh Fading Performance: 1% and 10 % PER for 1000 Byte Packets Eb/No required for 1 % PER Eb/No required for 10 % PER K. Halford, S. Halford and M. Webster

5.3.1 Multipath Performance with Flat Fading: Block Diagram November 2000 5.3.1 Multipath Performance with Flat Fading: Block Diagram Calculate Noise Power (N0) Generate Noise Measure energy per bit Measure Packet Error Rate Packet Error Rate Exponential Channel Model Transmitter Model Receiver Model Packet Length Data Rate Sample Rate Delay Spread K. Halford, S. Halford and M. Webster

5.3.1 Multipath Performance with Flat Fading: Matlab® Code November 2000 5.3.1 Multipath Performance with Flat Fading: Matlab® Code K. Halford, S. Halford and M. Webster

5.3.1 Multipath Performance with Flat Fading: Eb/No November 2000 5.3.1 Multipath Performance with Flat Fading: Eb/No K. Halford, S. Halford and M. Webster

5.3.1 Multipath Performance with Flat Fading: SNR November 2000 5.3.1 Multipath Performance with Flat Fading: SNR K. Halford, S. Halford and M. Webster

5.3.2 Multipath Performance without Flat Fading: Block Diagram November 2000 5.3.2 Multipath Performance without Flat Fading: Block Diagram Calculate Noise Power (N0) Generate Noise Measure energy per bit Measure Packet Error Rate Exponential Channel Model Transmitter Model Receiver Model Packet Error Rate Packet Length Data Rate Sample Rate Delay Spread K. Halford, S. Halford and M. Webster

5.3.2 Multipath Performance without Flat Fading: Eb/No November 2000 5.3.2 Multipath Performance without Flat Fading: Eb/No K. Halford, S. Halford and M. Webster

5.3.2 Multipath Performance without Flat Fading: SNR November 2000 5.3.2 Multipath Performance without Flat Fading: SNR K. Halford, S. Halford and M. Webster

5.3.3: Multipath Sweeps: 1% to 10% November 2000 5.3.3: Multipath Sweeps: 1% to 10% Comparison Item 24 For each modulation mode detemine and state the SNR (Es/No) at which in AWGN only, the waveform can achieve a PER of 0.01 for packets lengths of 1000B. Using the multipath model used in 23b above, fix the amount of AWGN at the 0.01 PER level for AWGN only. Increase the RMS delay spread until the PER for 1000B packets reach 0.1. State the RMS delay spread at this point. Answer: 0.0 nSeconds for all rates Why ? K. Halford, S. Halford and M. Webster

5.3.3 Multipath Sweeps: 1% to 10% November 2000 5.3.3 Multipath Sweeps: 1% to 10% PER Curves are very steep -- about 2 dB separates the 1% from the 10 % point K. Halford, S. Halford and M. Webster

5.3.3 Multipath Sweeps: 1% to 10% November 2000 5.3.3 Multipath Sweeps: 1% to 10% Rayleigh fading causes frequent swings to low SNR level K. Halford, S. Halford and M. Webster

5.3.3 Multipath Sweeps: 1% to 10% November 2000 5.3.3 Multipath Sweeps: 1% to 10% What we ran in place of Comparison Item 24 For each modulation mode detemine and state the SNR (Es/No) at which 25 nSeconds RMS delay, the waveform can achieve a PER of 0.01 for packets lengths of 1000B. Using the multipath model used in 23c above, fix the amount of AWGN at the 0.01 PER level for 25 nSeconds RMS delay. Increase the RMS delay spread until the PER for 1000B packets reach 0.1. State the RMS delay spread at this point. K. Halford, S. Halford and M. Webster

5.3.3 Multipath Performance: PER sweeps from 1% to 10% November 2000 5.3.3 Multipath Performance: PER sweeps from 1% to 10% K. Halford, S. Halford and M. Webster

5.4 Throughput Performance November 2000 5.4 Throughput Performance 5.4.1 Preamble Structures 5.4.2 ACK Assumptions 5.4.3 Throughput Analysis 5.4.3.1 Tables of 100, 1000, 2346 Byte Packets 5.4.3.2 Plots for full range of packet sizes 5.4.4 Throughput analysis for varying durations of overhead K. Halford, S. Halford and M. Webster

5.4.1 Preamble Structures: Long and Short Preambles November 2000 5.4.1 Preamble Structures: Long and Short Preambles 802.11 HRb LONG PREAMBLE Signal Extension OFDM SYNC PSDU SELECTABLE OFDM Symbols @ 6.6, 9.6, 13.2, 19.8, 26.4, 39.3, 52.8 or 59.4 Mbps PREAMBLE/HEADER 192 usecs 10.9 usecs ~6 usecs Data Payload 802.11 HRb SHORT PREAMBLE Signal Extension PREAM/HDR 72 BITS @ 1 Mbps OFDM SYNC PSDU SELECTABLE OFDM Symbols @ 6.6, 9.6, 13.2, 19.8, 26.4, 39.3, 52.8 or 59.4 Mbps ~6 usecs 96 usecs 10.9 usecs K. Halford, S. Halford and M. Webster

5.4.1 Preamble Structures: Ultra-Short Preamble November 2000 5.4.1 Preamble Structures: Ultra-Short Preamble Proposed Ultra-Short Preamble Signal Extension Data Rate # bytes of data Data Payload 12 Short Syncs Rep’s Long SYNC PSDU SELECTABLE @ 6.6, 9.9, 13.2, 19.8, 26.4, 39.6, 52.8 or 59.4 Mbps SIGNAL SYMBOL 16 usecs 3.6 usecs ~6 usecs K. Halford, S. Halford and M. Webster

5.4.2 ACK Assumptions 1) No RTS/CTS OR MPDU < RTS_Threshold: November 2000 5.4.2 ACK Assumptions 1) No RTS/CTS OR MPDU < RTS_Threshold: Many different scenarios, but the constant is: {MPDU, SIFS, ACK} source DIFS Data destination SIFS ACK 2) RTS/CTS and/or MPDU > RTS_Threshold: source DIFS RTS SIFS Data destination SIFS CTS SIFS ACK 3) Middle of Fragmented Transmission: source SIFS Fragment 1 destination SIFS ACK 1 K. Halford, S. Halford and M. Webster

5.4.2 ACK Assumptions (continued) November 2000 5.4.2 ACK Assumptions (continued) 112 Bits @ 6.6 Mbps = 20 usec SIFS PSDU SELECTABLE OFDM Symbols @ 6.6, 9.6, 13.2, 19.8, 26.4, 39.3, 52.8 or 59.4 Mbps Packet Header Packet Header ACK OFDM PAD ~6 usecs K. Halford, S. Halford and M. Webster

5.4.3.1 Throughput for 100 Byte Packets November 2000 5.4.3.1 Throughput for 100 Byte Packets K. Halford, S. Halford and M. Webster

5.4.3.1 Throughput for 1000 Byte Packets November 2000 5.4.3.1 Throughput for 1000 Byte Packets K. Halford, S. Halford and M. Webster

5.4.3.1 Throughput for 2346 Byte Packets November 2000 5.4.3.1 Throughput for 2346 Byte Packets K. Halford, S. Halford and M. Webster

5.4.3.2 Throughput with ACK November 2000 K. Halford, S. Halford and M. Webster

5.4.3.2 Throughput without ACK November 2000 5.4.3.2 Throughput without ACK K. Halford, S. Halford and M. Webster

5.4.4 Comparison of Throughput for Variable Overhead for 100 Byte MPDU November 2000 5.4.4 Comparison of Throughput for Variable Overhead for 100 Byte MPDU K. Halford, S. Halford and M. Webster

November 2000 5.4.4 Comparison of Throughput for Variable Overhead for 1000 Byte MPDU K. Halford, S. Halford and M. Webster

November 2000 5.4.4 Comparison of Throughput for Variable Overhead for 2346 Byte MPDU K. Halford, S. Halford and M. Webster

5.4.5 Aggregate Throughputs for 2.4 GHz November 2000 5.4.5 Aggregate Throughputs for 2.4 GHz Our proposal allows for 3 channels in US 2.4 GHz band Each channel can coexist in the same area Aggregate throughput is 3 times single channel throughput K. Halford, S. Halford and M. Webster

5.5 CW Jammer Test Description November 2000 5.5 CW Jammer Test Description CW jammer test steps a CW tone across the signal band in 50 kHz steps. At each step, the jamming level required to to produce the recommended BER is determined. The worst 20% of the J/S levels are discarded and the smallest of the remaining J/S is used as the jamming margin. Processing gain is then calculated according to the following: K. Halford, S. Halford and M. Webster

5.5 Performance Against CW Jammer November 2000 5.5 Performance Against CW Jammer Gp = (S/N)0 + Mj + Lsys K. Halford, S. Halford and M. Webster