2D Momentum Spectra of the ATI Electrons by 10 fs Laser Pulses

Slides:



Advertisements
Similar presentations
Electron wavefunction in strong and ultra-strong laser field One- and two-dimensional ab initio simulations and models Jacek Matulewski Division of Collision.
Advertisements

LCLS Atomic Physics with Intense X-rays at LCLS Philip H. Bucksbaum, University of Michigan, Ann Arbor, MI Roger Falcone, University of California, Berkeley,
Imaginary time method and nonlinear ionization by powerful free electron lasers S.V. Popruzhenko Moscow Engineering Physics Institute, Moscow EMMI workshop.
Intense Field Femtosecond Laser Interactions AMP TalkJune 2004 Ultrafast Laser Interactions with atoms, molecules, and ions Jarlath McKenna Supervisor:
Short pulses in optical microscopy Ivan Scheblykin, Chemical Physics, LU Outline: Introduction to traditional optical microscopy based on single photon.
Generation of short pulses
2. High-order harmonic generation in gases Attosecond pulse generation 1. Introduction to nonlinear optics.
Excitation processes during strong- field ionization and dissociatation of molecules Grad students: Li Fang, Brad Moser Funding : NSF-AMO November 29,
Time-resolved analysis of large amplitude collective motion in metal clusters Metal clusters : close « cousins » of nuclei Time resolved : « Pump Probe.
Collisional ionization in the beam body  Just behind the front, by continuity  →0 and the three body recombination  (T e,E) is negligible.
Laser-induced vibrational motion through impulsive ionization Grad students: Li Fang, Brad Moser Funding : NSF-AMO October 19, 2007 University of New Mexico.
Strong-field physics in the x-ray regime Louis DiMauro ITAMP FEL workshop June 21, 2006 fundamental studies of intense laser-atom interactions generation.
TOF Mass Spectrometer &
. Random Lasers Gregor Hackenbroich, Carlos Viviescas, F. H.
Ions in Intense Femtosecond Laser Fields Jarlath McKenna MSci Project10th December 2001 Supervisor: Prof. Ian Williams.
Why I never let go of my Ph.D. thesis research! Rhodes Scholars Symposium University of Illinois, Chicago March 28, 2012 Supported by: National Science.
Evidence of Radiational Transitions in the Triplet Manifold of Large Molecules Haifeng Xu, Philip Johnson Stony Brook University Trevor Sears Brookhaven.
CLEO2004 K. L. Ishikawa No. 0 Enhancement in photoemission from He + by simultaneous irradiation of laser and soft x-ray pulses Kenichi L. Ishikawa Department.
Ultrafast 2D Quantum Switching of p‑Electron Rotations
Femtosecond Dynamics of Molecules in Intense Laser Fields CPC2002 T.W. Schmidt 1, R.B. López-Martens 2, G.Roberts 3 University of Cambridge, UK 1. Universität.
Time-Dependent Electron Localization Function Co-workers: Tobias Burnus Miguel Marques Alberto Castro Esa Räsänen Volker Engel (Würzburg)
Interaction of laser pulses with atoms and molecules and spectroscopic applications.
Classical and quantum electrodynamics e®ects in intense laser pulses Antonino Di Piazza Workshop on Petawatt Lasers at Hard X-Ray Sources Dresden, September.
Relativistic nonlinear optics in laser-plasma interaction Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central University,
Femtosecond Laser Spectroscopy of C 60 Nieuwegein, The Netherlands August 21, 2001 Eleanor Campbell, Göteborg University & Chalmers, Sweden R.D. Levine,
W I S S E N T E C H N I K L E I D E N S C H A F T  Januar 13 Name und OE, Eingabe über > Kopf- und Fußzeile.
Multiple-Cone Formation during the Femtosecond-Laser Pulse Propagation in Silica Kenichi Ishikawa *, Hiroshi Kumagai, and Katsumi Midorikawa Laser Technology.
Nonlinear optical effect in the soft x-ray region by two-photon ionization of He + Nonlinear optical effect in the soft x-ray region by two-photon ionization.
typical kHz experiment
ELI-NP: The Way Ahead, Bucharest, March 2011 Modeling propagation of femtosecond laser pulses in ionized gas media Valer TOSA National Intitute for.
PFI-ZEKE Spectroscopy of Aluminum-Imidazole and -Pyrimidine Complexes JUNG SUP LEE, XU WANG, SERGIY KRASNOKUTSKI, and DONG-SHENG YANG University of Kentucky.
PHYSICAL CONSEQUENCE:  electron capture results in odd harmonic photons. harmonic cutoff: (3U p + IP) rule !!  elastic scattering yields energetic (10U.
Rydberg Series of C 60 Osnabrück, Germany March 2002 Eleanor Campbell, Göteborg University & Chalmers, Sweden R.D. Levine, Fritz Haber Center, Hebrew University.
Yu-Shu Lin, Cheng-Chung Chen, and Bor-Chen Chang Department of Chemistry National Central University Chung-Li 32001, Taiwan ~ ~ Electronic Spectroscopy.
Ionization in atomic and solid state physics. Paul Corkum Joint Attosecond Science Lab University of Ottawa and National Research Council of Canada Tunneling.
Tunneling Ionization of Hydrogen atom in an Electric Field Hillary Ssemanda 森下研.
GRK-1203 Workshop Oelde Watching a laser pulse at work
BORONYL MIMICS GOLD: A PHOTOELECTRON SPECTROSCOPY STUDY Tian Jian, Gary V. Lopez, Lai-Sheng Wang Department of Chemistry, Brown University International.
Resonance-enhanced Photoassociative Formation of Ground-state Rb 2 and Spectroscopy of Mixed-Character Excited States H.K. Pechkis, D. Wang, Y. Huang,
Laser assisted proton collision on light nuclei at moderate energies Imre Ferenc Barna
N. Kabachnik Institute of Nuclear Physics, Moscow State University
Tunable excitons in gated graphene systems
Four wave mixing in submicron waveguides
B. D. Bruner1, H. Soifer1, C. Vozzi2, M. Negro3, M. Devetta3, S
Small fermionic systems : the common methods and challenges
LASER PHYSICS 2013 PRAGUE, CZECH REPUBLIC
ISMS 2016 Urbana, IL Vura-Weis Group - UIUC
Muhammed Sayrac Phys-689 Modern Atomic Physics Spring-2016
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
LOW FREQUENCY LIMIT OF LASER FIELDS
Fragmentation Dynamics of H2+ / D2+ Kansas State University
Experimental Mapping of the Absolute Value of the Transition Dipole Moment Function μe(R) of the Na2 A1Σu+ - X1Σg+ Transition E. Ahmed1, B. Beser1, P.
The Photoelectron Angular Distribution as a Probe of Energetically Indistinguishable Channels in Photodetachment Matthew Van Duzor, Richard Mabbs, Foster.
Wavelength-dependence of Momentum-Space Images
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Xiao Min Tong and Chii Dong Lin
Model-Independent Measurement of Excited State Fraction in a MOT
Photoelectron diffraction from small molecules:
Marco Polo, Daniel Felinto and Sandra Vianna Departamento de Física
Diagnosis of a High Harmonic Beam Using
PUMP-PROBE DELAYED IONIZATION STUDY OF PHENYLACETYLENE
Perturbation Theory Lecture 5.
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
High-power laser pulse propagation in silica
I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray
Strong field atomic ionization
High Harmonic Analysis Using a COLTRIMS Technique
AMO Early Science Capability
Perturbation Theory Lecture 5.
Few-body quantum dynamics in strong fields:
Presentation transcript:

2D Momentum Spectra of the ATI Electrons by 10 fs Laser Pulses Zhangjin Chen Advisor: C. D. Lin Collaborators: Marlene Wickenhauser, A. T. Le and X. M. Tong Department of Physics Kansas State University

OUTLINE Introduction Theory Results Conclusions Background Motivation Long range Coulomb potential effects Intensity dependence for fixed wavelength Conclusions

Background laser pulse ionization of electron atom Ar intensity

Background Keldysh parameter: Multiphoton ionization Above-threshold-ionization (ATI) Multiphoton ionization Tunneling ionization

Background He Ar Bucksbaum et al: PRA 37, 3615(R) (1988) Wickenhauser et al: PRA 73, 011401(R) (2006) He Ar ħω ATI peaks

Motivation C.M. Marhajan, A. Alanser, ...,C.L. Cocke et al. (submitted) atom Low energy spectra: lots of structure even in tunneling regime

Theory Numerical solution of TDSE Strong field approximation (SFA) Neglect: -Coulomb field on ionized electrons -Depletion of ground state -Other bound states Single active electron approximation Dipole transition moment Split operator method for time propagation Laser-dressed energy X.M. Tong and Shih-I Chu: Chem Phys 217, 119 (1997) M. Lewenstein et al: PRA 49, 2117 (1994)

Effects of Coulomb Potential

Effects of Coulomb Potential Ip=15.759 eV Exact TDSE Ip=15.612 eV TDSE for Rc=2 P (a.u.) P (a.u.) Ip=15.759 eV TDSE for Rc=8 SFA Ip=15.759 eV TDSE for Rc=5 P|| (a.u.) P|| (a.u.)

Effects of Coulomb Potential Exact TDSE TDSE for Rc=2 P (a.u.) TDSE for Rc=8 SFA P|| (a.u.) P|| (a.u.)

Volume Effect x z y S Augst et al: J. Opt. Soc. Am. B 8, 858 (1991) Rayleigh range of the focus z x y Peak Laser Intensity S Augst et al: J. Opt. Soc. Am. B 8, 858 (1991)

Intensity dependence P (a.u.) P|| (a.u.) P|| (a.u.) 600 nm, n=10

P (a.u.) P|| (a.u.) P|| (a.u.) Intensity dependence 600 nm, n=10

Conclusion Coulomb tail effects are crucial for slow photoelectrons Volume effects has to be taken into account when compare theory with experiment

Thank You !

OUTLINE Introduction Theory Results Conclusions Background Motivation Long range Coulomb potential effects Wavelength dependence for fixed Keldysh parameter Wavelength dependence for fixed 1st peak position Intensity dependence for fixed wavelength Conclusions

Background P (a.u.) P (arb units) P|| (a.u.) P|| (a.u.) P|| (a.u.) Wickenhauser et al: PRA 73, 011401(R) (2006) Background P (a.u.) g ~ 1.76 g ~ 0.89 0 0.3 0.6 0 0.3 0.6 P (arb units) 0 0.5 1 P|| (a.u.) 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 P|| (a.u.) P|| (a.u.)

Wavelength dependence for fixed 400 nm, n=7 600 nm, n=10 P (a.u.) 500 nm, n=9 700 nm, n=12 P|| (a.u.) P|| (a.u.)

Wavelength dependence for fixed 400 nm, n=7 600 nm, n=11 P (a.u.) 500 nm, n=9 700 nm, n=13 P|| (a.u.) P|| (a.u.)

Fixed Keldysh parameter I λ Up Up+Ip γ n nһω p-1 3.200 400 4.7770 20.5366 1.2843 7 21.6580 0.3 2.050 500 4.7816 20.5412 1.2837 9 22.2768 0.36 1.420 600 4.7695 20.5291 1.2853 10 20.6267 0.085 1.050 700 4.8003 20.5599 1.2812 12 21.2160 0.22 0.800 800 4.7770 20.5366 1.2843 14 21.6580 0.287

Fixed 1st peak position Intensity wavelength Up Up+Ip gamma n nw k first peak (eV) Energy of photon=3.094000 eV 3.200 400 4.7770 20.5366 1.2843 7 21.6580 0.2872 1.12 Energy of photon=2.475200 eV 2.310 500 5.3881 21.1477 1.2093 9 22.2768 0.2881 1.13 Energy of photon=2.062667 eV 1.730 600 5.8107 21.5703 1.1645 11 22.6893 0.2868 1.12 Energy of photon=1.768000 eV 1.340 700 6.1261 21.8857 1.1341 13 22.9840 0.2842 1.10