Chapter 14 NMR: Connectivity

Slides:



Advertisements
Similar presentations
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
Advertisements

Nuclear Magnetic Resonance Yale Chemistry 800 MHz Supercooled Magnet.
Interpreting Hydrogen NMR. Interpreting NMR Spectra Calculate elements of unsaturation (1/2(2C+2-H), ignore O, halogens count as H’s Count number of signals.
Structure Determination: MS, IR, NMR (A review)
1 CHAPTER 13 Molecular Structure by Nuclear Magnetic Resonance (NMR)
1 Nuclear Magnetic Resonance Spectroscopy III Advanced Concepts: ORGANIC I LABORATORY W. J. Kelly.
Nuclear Magnetic Resonance Spectrometry Chap 19
Nuclear Magnetic Resonance (NMR) Spectroscopy
Chapter 13 Nuclear Magnetic Resonance Spectroscopy
1 Nuclear Magnetic Resonance Spectroscopy Renee Y. Becker Valencia Community College CHM 2011C.
13.6 Interpreting Proton NMR Spectra. 1. number of signals 2. their intensity (as measured by area under peak) 3. splitting pattern (multiplicity) Information.
Lecture 3 NMR Spectroscopy: Spin-spin Splitting in 1 H NMR Integration Coupling Constants 13 C NMR Sample Preparation for NMR Analysis Due: Lecture Problem.
Interpreting 1H (Proton) NMR Spectra
NMR Theory and C-13 NMR. Nuclear Magnetic Resonance Powerful analysis – Identity – Purity No authentic needed Analyze nuclei – 1 H, 13 C, 31 P, etc –
Proton NMR Spectroscopy. The NMR Phenomenon Most nuclei possess an intrinsic angular momentum, P. Any spinning charged particle generates a magnetic field.
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy Based on McMurry’s Organic Chemistry, 7 th edition.
Nuclear Magnetic Resonance (NMR) Spectroscopy Structure Determination
Nuclear Magnetic Resonance Spectroscopy. The Use of NMR Spectroscopy Used to map carbon-hydrogen framework of molecules Most helpful spectroscopic technique.
Nuclear Magnetic Resonance Spectroscopy
Proton NMR Spectroscopy. The NMR Phenomenon Most nuclei possess an intrinsic angular momentum, P. Any spinning charged particle generates a magnetic field.
Nuclear Magnetic Resonance
NMR-Part Chemical Shifts in NMR The nuclei not only interact with the magnetic field but also with the surronding nuclei and their electrons. The.
Nuclear Magnetic Resonance Spectroscopy Dr. Sheppard Chemistry 2412L.
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy Based on McMurry’s Organic Chemistry, 6 th edition.
Common 1 H NMR Patterns 1. triplet (3H) + quartet (2H) -CH 2 CH 3 2. doublet (1H) + doublet (1H) -CH-CH- 3. large singlet (9H) t-butyl group 4. singlet.
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy Leroy Wade.
1 Nuclear Magnetic Resonance Spectroscopy 13 C NMR 13 C Spectra are easier to analyze than 1 H spectra because the signals are not split. Each type of.
Dr. Wolf's CHM 201 & Introduction to 1 H NMR Spectroscopy.
Structure Determination: Nuclear Magnetic Resonance Spectroscopy.
Chromatography (Separations) Mass Spectrometry Infrared (IR) Spectroscopy Nuclear Magnetic Resonance (NMR) Spectroscopy X-ray Crystallography (visual solid.
Nuclear Magnetic Resonance Spectroscopy. 2 Introduction NMR is the most powerful tool available for organic structure determination. It is used to study.
Nuclear Magnetic Resonance Spectroscopy
Chapter 13 NMR Spectroscopy
Chapter 13 - Spectroscopy YSU 400 MHz Nuclear Magnetic Resonance Spectrometer(s)
Nuclear Magnetic Resonance Information Gained: Different chemical environments of nuclei being analyzed ( 1 H nuclei): chemical shift The number of nuclei.
Chapter 13 Structure Determination: Nuclear Magnetic Resonance Spectroscopy.
Important Concepts 10 1.NMR – Most important spectroscopic tool for elucidating organic structures. 2.Spectroscopy – Based on lower energy forms of molecules.
The Number of Absorptions Protons have different chemical shifts when they are in different chemical environments Types of protons: – Homotopic Protons.
Nuclear Magnetic Resonance Spectroscopy
Structure Elucidation Method
13.6 Interpreting 1H NMR Spectra
Spectroscopy 3: Magnetic Resonance CHAPTER 15. Conventional nuclear magnetic resonance Energies of nuclei in magnetic fields Typical NMR spectrometer.
NMR Chapter 13 1 H-NMR Spectroscopy CHEMISTRY 220 Spring 2003.
11.1 Nuclear Magnetic Resonance Spectroscopy
The Use of NMR Spectroscopy
NMR Theory From physics we know that a spinning charge has an associated magnetic field. All nuclei have positive charge. Some nuclei have “spin” and are.
Nuclear Magnetic Resonance
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
NMR spectroscopy – key principles
Prepared by Dr. Upali Siriwardane For CHEM 281 Lab
16.6 Integration The integration or area under the peak quantifies the relative number of protons giving rise to a signal A computer will calculate the.
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
NMR Theory There are 2 variables in NMR: an applied magnetic field B0, and the frequency ( ) of radiation required for resonance, measured in MHz.
Nuclear Magnetic Resonance Spectroscopy
1H-NMR spectra interpretation
The Use of NMR Spectroscopy
Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance Spectroscopy
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
1H NMR Interpretation Number of Signals (Resonances)
Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance Spectroscopy
CARBON-13 NMR.
Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for organic structure determination. It is used to study.
Nuclear Magnetic Resonance Spectroscopy
1H NMR Interpretation Number of Signals (Resonances)
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
WIDIASTUTI AGUSTINA ES, S.Si., M.Si.
The Use of NMR Spectroscopy
Presentation transcript:

Chapter 14 NMR: Connectivity Organic Chemistry II Fall 2005 Chapter 14 NMR: Connectivity nuclear magnetic resonance (NMR): theory information: d, multiplicity, integral;  544 Figure 14.1 nuclear spin (1H & 13C)nuclear magnetic moment (m) external field: DE = hgBo/2p,  545 Figure 14.2 different 1H with different e- density: different resonance electronic spin  local magnetic field (opposite to Bo) chemical shift (d): ppm (Me4Si),  548 Figure 14.4 lower n -downfield-deshielded / higher n -upfield-shielded OrgChem-Chap14 Chapter 14

Factors on Chemical Shift (d ) Organic Chemistry II Fall 2005 Factors on Chemical Shift (d ) inductive effects:  549 Y-C-H: downfield with electronegative Y p-electron effects: anisotropic effect,  549 H-C(O) > H-CAr > H-Csp2 > H-Csp:  550 top exchangeable protons: O-H/N-H (H-bonding) O-H: 2~5 (ppm), N-H: 1~3, CO2H: ~12 (10~15) OrgChem-Chap14 Chapter 14

Chemical Shift Equivalence Organic Chemistry II Fall 2005 Chemical Shift Equivalence chemically equivalent: interchangeable identical substitution results:  550 bot enantiotopic & diastereotopic:  551 practice:  552 Problem 14.1 & 14.2 estimation of d :  553 & 554 Table 14.1 increments: CH2 +0.3 ppm; CH +0.7; 2nd a-group +(d -0.9); b-group +0.3 practice:  554-5 & 556 Prac. Prob. 14.2 OrgChem-Chap14 Chapter 14

Coupling Constant (J): Connectivity Organic Chemistry II Fall 2005 Coupling Constant (J): Connectivity spin coupling: change in the local magnetic field by nearby H atoms having different d multiplicity: Bo  BH;  557~8 & Figure 14.6-7 splitting pattern: JAX in 0~20 Hz (typical); s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad) splitting with non-equivalent Hs:  560 leaning: Hs with close d ;  562 Figure 14.8 proximity: the reach of local BH ;  557 top practice:  561, Problem 14.4~6 OrgChem-Chap14 Chapter 14

Interpretation of 1H NMR Spectra Organic Chemistry II Fall 2005 Interpretation of 1H NMR Spectra deuterated solvents: CDCl3, (CD3)2SO, C6D6 chemical exchange: average d conformation: cyclohexane; chair (He) chair (Ha) H (D) exchange: O-H / N-H,  563 middle carbocations by NMR:  565 Focus On NMR in medicine: MRI;  574 Focus On partial structure:d , multiplicity, integral practice:  567~573, Fig. 14.9-10 & Prob. 14.8 OrgChem-Chap14 Chapter 14

13C NMR Spectra d range: 0~220 ppm;  576 middle Organic Chemistry II Fall 2005 13C NMR Spectra d range: 0~220 ppm;  576 middle  577 Table 14.2 &  575 Figure 14.11 coupling: 13C-H (1JCH ~ 3JCH) [no 13C -13C] natural abundance: 13C 1.1% & 12C 98.9% decoupling: broadband (BB) & off-resonance DEPT 13C-NMR:  579 Figure 14.12 OrgChem-Chap14 Chapter 14

Interpretation of 13C NMR Spectra Organic Chemistry II Fall 2005 Interpretation of 13C NMR Spectra integration: usually not proportional No. of carbons: symmetry of molecules practice:  580~1 Figure 14.13~14 &  582~3 Problem 14.11 OrgChem-Chap14 Chapter 14

Structure Identification: IR & NMR Organic Chemistry II Fall 2005 Structure Identification: IR & NMR molecular formula: degree of unsaturation IR: functional groups 1H & 13C NMR: CmHn fragments, functional groups, connectivity (- CmHn-CoHp-) tentative structure & double check!! practice:  585~7 Figure 14.15~16 &  587~95 Problems 14.12~14 OrgChem-Chap14 Chapter 14