Modeling Coronal Mass Ejections with EUHFORIA

Slides:



Advertisements
Similar presentations
Heliospheric Propagation of ICMEs: The Drag-Based Model B. Vršnak 1, T. Žic 1, M. Dumbović 1, J. Čalogović 1, A. Veronig 2, M. Temmer 2, C. Moestl 2, T.
Advertisements

The Relationship Between CMEs and Post-eruption Arcades Peter T. Gallagher, Chia-Hsien Lin, Claire Raftery, Ryan O. Milligan.
MHD modeling of coronal disturbances related to CME lift-off J. Pomoell 1, R. Vainio 1, S. Pohjolainen 2 1 Department of Physics, University of Helsinki.
On the Space Weather Response of Coronal Mass Ejections and Their Sheath Regions Emilia Kilpua Department of Physics, University of Helsinki
ICMEs and Magnetic Clouds Session Summary Charlie Farrugia and Lan Jian.
CAS Key Laboratory of Geospace Environment, USTC The Deflection of 2008 September 13 CME in Heliosphere Space ISEST, Hvar, Croatia,2013 June 17 Collaborators:
Interaction of coronal mass ejections with large-scale structures N. Gopalswamy, S. Yashiro, H. Xie, S. Akiyama, and P. Mäkelä IHY – ISWI Regional meeting.
Reviewing the Summer School Solar Labs Nicholas Gross.
1 Diagnostics of Solar Wind Processes Using the Total Perpendicular Pressure Lan Jian, C. T. Russell, and J. T. Gosling How does the magnetic structure.
Heliospheric MHD Modeling of the May 12, 1997 Event MURI Meeting, UCB/SSL, Berkeley, CA, March 1-3, 2004 Dusan Odstrcil University of Colorado/CIRES &
Vincent Surges Advisors: Yingna Su Aad van Ballegooijen Observations and Magnetic Field Modeling of a flare/CME event on 2010 April 8.
SHINE The Role of Sub-Surface Processes in the Formation of Coronal Magnetic Flux Ropes A. A. van Ballegooijen Smithsonian Astrophysical Observatory.
Understanding Magnetic Eruptions on the Sun and their Interplanetary Consequences A Solar and Heliospheric Research grant funded by the DoD MURI program.
Progenitors to Geoeffective Coronal Mass Ejections: Filaments and Sigmoids David McKenzie, Robert Leamon Karen Wilson, Zhona Tang, Anthony Running Wolf.
Discussion Summary: Group B –Solar Active Regions And Their Production of Flares and Coronal Mass Ejections Discussion Leaders: George Fisher Hugh Hudson.
C. May 12, 1997 Interplanetary Event. Ambient Solar Wind Models SAIC 3-D MHD steady state coronal model based on photospheric field maps CU/CIRES-NOAA/SEC.
CISM solar wind metrics M.J. Owens and the CISM Validation and Metrics Team Boston University, Boston MA Abstract. The Center for Space-Weather Modeling.
In both cases we want something like this:
Ward Manchester University of Michigan Coupling of the Coronal and Subphotospheric Magnetic Field in Active Regions by Shear Flows Driven by The Lorentz.
Identifying Interplanetary Shock Parameters in Heliospheric MHD Simulation Results S. A. Ledvina 1, D. Odstrcil 2 and J. G. Luhmann 1 1.Space Sciences.
Space Weather Forecast With HMI Magnetograms: Proposed data products Yang Liu, J. T. Hoeksema, and HMI Team.
Center for Space Environment Modeling W. Manchester 1, I. Roussev, I.V. Sokolov 1, 1 University of Michigan AGU Berkeley March.
C. May 12, 1997 Interplanetary Event. May 12, 1997 Interplanetary Coronal Mass Ejection Event CU/CIRES, NOAA/SEC, SAIC, Stanford Tatranska Lomnica, Slovakia,
Coronal and Heliospheric Modeling of the May 12, 1997 MURI Event MURI Project Review, NASA/GSFC, MD, August 5-6, 2003 Dusan Odstrcil University of Colorado/CIRES.
MHD Modeling of the Large Scale Solar Corona & Progress Toward Coupling with the Heliospheric Model.
RT Modelling of CMEs Using WSA- ENLIL Cone Model
Characterization of Coronal Mass Ejection Deflection using Coronagraph Image Sequences Jenna L. Zink, GMU Undergraduate Research Scholars Program, Rebekah.
MAGNETIC TWIST OF EUV CORONAL LOOPS OBSERVED BY TRACE RyunYoung Kwon, Jongchul Chae Astronomy Program, School of Earth and Environmental Science Seoul.
Evolution of the 2012 July 12 CME from the Sun to the Earth: Data- Constrained Three-Dimensional MHD Simulations F. Shen 1, C. Shen 2, J. Zhang 3, P. Hess.
Frontiers in Modeling Magnetic Flux Emergence and the Development of Solar Eruptive Activities Organizers: Mark Linton and Yuhong Fan SHINE Liaison: KD.
1 THE RELATION BETWEEN CORONAL EIT WAVE AND MAGNETIC CONFIGURATION Speakers: Xin Chen
Arrival time of halo coronal mass ejections In the vicinity of the Earth G. Michalek, N. Gopalswamy, A. Lara, and P.K. Manoharan A&A 423, (2004)
Charged Particle Trajectories in Earth’s Magnetic Field Sarah Arveson.
New STEREO/SECCHI Processing for Heliospheric Transients David F. Webb ISR, Boston College, MA, USA New England Space Science Consortium.
The Solar Wind.
I. INTRODUCTION Gas Pressure Magnetic Tension Coronal loops are thin and bright structure of hot plasma emitting intense radiation in X-ray and EUV. (1)
Connecting Near-Sun CME flux Ropes to the 1-AU Flux Ropes using the Flare-CME Relationship N. Gopalswamy, H. Xie, S. Yashiro, and S. Akiyama NASA/GSFC.
Forecast of Geomagnetic Storm based on CME and IP condition R.-S. Kim 1, K.-S. Cho 2, Y.-J. Moon 3, Yu Yi 1, K.-H. Kim 3 1 Chungnam National University.
Modeling 3-D Solar Wind Structure Lecture 13. Why is a Heliospheric Model Needed? Space weather forecasts require us to know the solar wind that is interacting.
A Numerical Study of the Breakout Model for Coronal Mass Ejection Initiation P. MacNeice, S.K. Antiochos, A. Phillips, D.S. Spicer, C.R. DeVore, and K.
Heliospheric Simulations of the SHINE Campaign Events SHINE Workshop, Big Sky, MT, June 27 – July 2, 2004 Dusan Odstrcil 1,2 1 University of Colorado/CIRES,
Data-constrained Simulation of CME Initiation and Propagation Antonia Savcheva ESPM 2014 September 11, 2014 Collaborators: R. Evans, B. van der Holst,
Analysis of 3 and 8 April 2010 Coronal Mass Ejections and their Influence on the Earth Magnetic Field Marilena Mierla and SECCHI teams at ROB, USO and.
Multi-Point Observations of The Solar Corona for Space weather Acknowledgements The forecasting data was retrieved from NOAA SWPC products and SIDC PRESTO.
The CME geomagnetic forecast tool (CGFT) M. Dumbović 1, A. Devos 2, L. Rodriguez 2, B. Vršnak 1, E. Kraaikamp 2, B. Bourgoignie 2, J. Čalogović 1 1 Hvar.
State of NOAA-SEC/CIRES STEREO Heliospheric Models STEREO SWG Meeting, NOAA/SEC, Boulder, CO, March 22, 2004 Dusan Odstrcil University of Colorado/CIRES.
1 Pruning of Ensemble CME modeling using Interplanetary Scintillation and Heliospheric Imager Observations A. Taktakishvili, M. L. Mays, L. Rastaetter,
Manuela Temmer Institute of Physics, University of Graz, Austria Tutorial: Coronal holes and space weather consequences.
Detecting, forecasting and modeling of the 2002/04/17 halo CME Heliophysics Summer School 1.
Driving 3D-MHD codes Using the UCSD Tomography
Ward Manchester University of Michigan
Y. C.-M. Liu, M. Opher, O. Cohen P.C.Liewer and T.I.Gombosi
Heliosphere: Solar Wind
Introduction to Space Weather Interplanetary Transients
Predicting the Probability of Geospace Events Based on Observations of Solar Active-Region Free Magnetic Energy Dusan Odstrcil1,2 and David Falconer3,4.
D. Odstrcil1,2, V.J. Pizzo2, C.N. Arge3, B.V.Jackson4, P.P. Hick4
Miho Janvier (IAS) & Ben Lynch (UCB)
A New Methodology to Predict the Axial ICME Magnetic Field at 1 AU
Introduction to “Standard” Flux-Rope Fitting
Orientations of Halo CMEs and Magnetic Clouds
Orientations of Halo CMEs and Magnetic Clouds
Corona Mass Ejection (CME) Solar Energetic Particle Events
Forecasting the arrival time of the CME’s shock at the Earth
Lecture 5 The Formation and Evolution of CIRS
Abstract We simulate the twisting of an initially potential coronal flux tube by photospheric vortex motions. The flux tube starts to evolve slowly(quasi-statically)
ESS 261 Topics in magnetospheric physics Space weather forecast models ____ the prediction of solar wind speed April 23, 2008.
Introduction to Space Weather
MHD Simulation of Plasmoid-Induced-Reconnection in Solar Flares
Flux Rope from Eruption Data (FRED) and its Interplanetary Counterpart
The Second International Space Weather Symposium
Presentation transcript:

Modeling Coronal Mass Ejections with EUHFORIA A Parameter Study of a Flux Rope Model Christine Verbeke1, C. Scolini1,2, J. Pomoell3, S. Poedts1, E. Asvestari3, E. Kilpua3 1KU Leuven, Belgium, 2ROB, Belgium, 3University of Helsinki, Finland

EUHFORIA Heliospheric 3D MHD simulations Insertion of Coronal Mass Ejections (CMEs) possible

Empirical / data-driven models EUHFORIA Magnetogram: GONG Solar wind model: Semi-empirical Heliosphere model: Time-dependent 3D MHD CME model: - Cone model - Flux rope model Coronagraph imagery + others 0.1 AU 2 AU Observational data Empirical / data-driven models Physics-based model

Cone model vs Spheromak model: Bz (HEEQ) Cone model Spheromak model Credit: C. Scolini

Spheromak model at 1AU: Starting model Credit: C. Scolini

Flux rope model: Parameters Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters

CME model parameters: multi-viewpoint observations Magnetic parameters: Flux determination: FRED [Gopalswamy+,2017] FRED by combining two key results: the reconnected (RC) flux during an eruption approximately equals the poloidal flux of the ejected flux white-light or EUV coronal mass ejections (CMEs) can be fit to a FR to get its geometrical properties The RC flux is computed from the area under post-eruption arcades and the underlying unsigned photospheric magnetic field strength. The poloidal flux of the FR is known from the RC flux; assuming that the FR is force free (Lundquist) we can get the axial and azimuthal field components and the toroidal flux of the flux rope. Kinematic parameters: GCS modeling Credit: C. Scolini

LFF Spheromak: Br (HEEQ)

LFF Spheromak: Bclt (HEEQ)

LFF Spheromak: Blon (HEEQ)

Flux rope model: Parameters Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters

Flux rope model: Parameters Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters

Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14 CME speed is not affecting the magnetic field significantly, but effect on arrival time and density.

Flux rope model: Parameters Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters

Longitude/Latitude Centre of CME misses Earth

Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Longitude Similar observations can be made for changes in latitude

Longitude Similar observations can be made for changes in latitude It is possible to miss the high impact of a CME by varying the longitude within the errors of observations

Flux rope model: Parameters Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters

Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

Flux Flux affects arrival time and B strength. Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14 Flux affects arrival time and B strength. Be careful about total pressure!

Conclusions Small changes in input parameters can have large influence on B, v and rho and thus the impact of the CME at Earth Input parameters all have their errors  We need ensemble runs for flux rope CME simulations Future work: Pressure balance Quantification of how well a simulation does? Erosion? Deflection? Effect solar wind?