Modeling Coronal Mass Ejections with EUHFORIA A Parameter Study of a Flux Rope Model Christine Verbeke1, C. Scolini1,2, J. Pomoell3, S. Poedts1, E. Asvestari3, E. Kilpua3 1KU Leuven, Belgium, 2ROB, Belgium, 3University of Helsinki, Finland
EUHFORIA Heliospheric 3D MHD simulations Insertion of Coronal Mass Ejections (CMEs) possible
Empirical / data-driven models EUHFORIA Magnetogram: GONG Solar wind model: Semi-empirical Heliosphere model: Time-dependent 3D MHD CME model: - Cone model - Flux rope model Coronagraph imagery + others 0.1 AU 2 AU Observational data Empirical / data-driven models Physics-based model
Cone model vs Spheromak model: Bz (HEEQ) Cone model Spheromak model Credit: C. Scolini
Spheromak model at 1AU: Starting model Credit: C. Scolini
Flux rope model: Parameters Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters
CME model parameters: multi-viewpoint observations Magnetic parameters: Flux determination: FRED [Gopalswamy+,2017] FRED by combining two key results: the reconnected (RC) flux during an eruption approximately equals the poloidal flux of the ejected flux white-light or EUV coronal mass ejections (CMEs) can be fit to a FR to get its geometrical properties The RC flux is computed from the area under post-eruption arcades and the underlying unsigned photospheric magnetic field strength. The poloidal flux of the FR is known from the RC flux; assuming that the FR is force free (Lundquist) we can get the axial and azimuthal field components and the toroidal flux of the flux rope. Kinematic parameters: GCS modeling Credit: C. Scolini
LFF Spheromak: Br (HEEQ)
LFF Spheromak: Bclt (HEEQ)
LFF Spheromak: Blon (HEEQ)
Flux rope model: Parameters Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters
Flux rope model: Parameters Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters
Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14 CME speed is not affecting the magnetic field significantly, but effect on arrival time and density.
Flux rope model: Parameters Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters
Longitude/Latitude Centre of CME misses Earth
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Longitude Similar observations can be made for changes in latitude
Longitude Similar observations can be made for changes in latitude It is possible to miss the high impact of a CME by varying the longitude within the errors of observations
Flux rope model: Parameters Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters
Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
Flux Flux affects arrival time and B strength. Lat Lon Width Speed Density Helicity Tilt angle Flux baserun 2012-07-12T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14 Flux affects arrival time and B strength. Be careful about total pressure!
Conclusions Small changes in input parameters can have large influence on B, v and rho and thus the impact of the CME at Earth Input parameters all have their errors We need ensemble runs for flux rope CME simulations Future work: Pressure balance Quantification of how well a simulation does? Erosion? Deflection? Effect solar wind?