Figure 3 Example wireless motility recording

Slides:



Advertisements
Similar presentations
Figure 3 Low-grade inflammation in FGID
Advertisements

Figure 2 Endoscopic imaging of intestinal villi
Figure 2 Enteroids can model transport physiology
Figure 1 Imaging of a depressed intramucosal carcinoma
Figure 4 Activation of clopidogrel via cytochrome P450
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Patients cured of HCV infection
Figure 2 The three most commonly performed bariatric surgical procedures Figure 2 | The three most commonly performed bariatric surgical procedures. a.
Figure 4 Simple perianal fistula
Nat. Rev. Cardiol. doi: /nrcardio
Figure 1 Worldwide incidence of CCA
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Biosimilar development process
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Effect of PPIs on gastric physiology
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Giant lipid droplet formation
Figure 1 Suggested biopsy-avoiding diagnostic pathway for coeliac disease Figure 1 | Suggested biopsy-avoiding diagnostic pathway for coeliac disease.
Figure 2 Modelling the effect of HCV treatment on reinfection in people who inject drugs Figure 2 | Modelling the effect of HCV treatment on reinfection.
Figure 1 Host range of hepatitis E virus
Figure 2 Switching of biologic agents and biosimilars
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 High-resolution manometry of achalasia subtypes
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Key metrics of pressure topography (Clouse)
Figure 7 Example colonic high-resolution manometry
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Pseudorelaxation as a consequence of
Figure 4 Example plots of high-resolution gastroduodenal manometry
Figure 1 Tropical sprue and PI-IBS
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Examples of reflux episodes on pH and pH-impedance monitoring
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 13C-octanoic acid gastric emptying breath test
Figure 4 Functional luminal imaging probe
in the UK (1961–2012), France (1961–2014) and Italy (1961–2010)
Figure 5 Representative barium defecography images
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Metrics from oesophageal high-resolution
Figure 6 Possible therapeutic targets to decrease hepatic steatosis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 5 High-resolution manometry studies performed
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Examples of gene expression heterogeneity
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
with broad-spectrum antibiotics
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Assessment of colonic transit time with radiopaque markers
Figure 5 Systems biological model of IBS
Figure 4 Local species pools that contribute to the
Figure 1 Cancer stem cell plasticity and stem cell homeostasis in the gut Figure 1 | Cancer stem cell plasticity and stem cell homeostasis in the gut.
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Cardiol. doi: /nrcardio
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Lifelong influences on the gut microbiome from
Figure 2 Classifications and appearance of CCAs
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 8 Assessment of colonic tone using a barostat device
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Endomicroscopy for optical intestinal biopsy
Presentation transcript:

Figure 3 Example wireless motility recording Figure 3 | Example wireless motility recording. Wireless motility recordings in a healthy male participant (part a) and a female patient with severe constipation (part b) are shown. Gastric emptying in the control individual (part a) occurs after ~3 h (upper limit of normal: 5–6 h) and is preceded by strong antral contractions suggestive of antral phase III motility (red arrow). A constant decrease in pH at ~6 h 30 min (green arrow) marks ileocaecal transit, such that small bowel transit time is estimated to be ~3 h 30 min (normal range: 2.5–8 h). Abrupt temperature drop (blue arrow) shows that the capsule is excreted after ~11 h 30 min, such that colonic transit time is ~5 h, which is equivalent to the lower limit of normal. In the patient with severe constipation (part b), gastric emptying time is relatively long (~5 h, first green arrow), ileocaecal transit occurs ~16 h after ingestion of the motility capsule (second green arrow), and excretion of the capsule does not occur until 133 h (blue arrow), such that both small bowel transit time (~11 h) and colonic transit time (~117 h) are prolonged. Please note that the timescales are different for the left and right panels. Keller, J. et al. (2018) Advances in the diagnosis and classification of gastric and intestinal motility disorders Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2018.7