Differential accumulation of lead and zinc in double-tidemarks of articular cartilage  A. Roschger, J.G. Hofstaetter, B. Pemmer, N. Zoeger, P. Wobrauschek,

Slides:



Advertisements
Similar presentations
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Advertisements

D. A. Walsh, F. R. C. P. , Ph. D. , C. S. Bonnet, B. Sc. , E. L
Perlecan in late stages of osteoarthritis of the human knee joint
B. Bai, Y. Li  Osteoarthritis and Cartilage 
Local gene delivery of heme oxygenase-1 by adeno-associated virus into osteoarthritic mouse joints exhibiting synovial oxidative stress  S. Kyostio-Moore,
Mineralization of articular cartilage in the sprague-dawley rat: characterization and mechanical analysis  M.L. Roemhildt, B.D. Beynnon, M. Gardner-Morse 
Yevgeniya Kobrina, Lassi Rieppo, Simo Saarakkala, Jukka S
2D and 3D MOCART scoring systems assessed by 9
L. Zhang, M. Yang, P. Marks, L. M. White, M. Hurtig, Q. -S. Mi, G
Diffusion of Gd-DTPA2− into articular cartilage
T. Maerz, M. D. Newton, K. Kristof, O. Motovylyak, J. S. Fischgrund, D
Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage 
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
MR spectroscopy measurement of the diffusion of dimethyl sulfoxide in articular cartilage and comparison to theoretical predictions  A. Abazari, J.A.W.
The groove model of osteoarthritis applied to the ovine fetlock joint
Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage  M. Rutgers, M.J.P. van Pelt, W.J.A. Dhert, L.B.
Contrast agent electrostatic attraction rather than repulsion to glycosaminoglycans affords a greater contrast uptake ratio and improved quantitative.
Contrast-enhanced CT facilitates rapid, non-destructive assessment of cartilage and bone properties of the human metacarpal  B.A. Lakin, D.J. Ellis, J.S.
Evaluation of cartilage matrix disorders by T2 relaxation time in patients with hip dysplasia  T. Nishii, M.D., H. Tanaka, M.D., N. Sugano, M.D., T. Sakai,
Clinical outcome of autologous chondrocyte implantation is correlated with infrared spectroscopic imaging-derived parameters  A. Hanifi, J.B. Richardson,
Protective effect of a new biomaterial against the development of experimental osteoarthritis lesions in rabbit: a pilot study evaluating the intra-articular.
Initial application of EPIC-μCT to assess mouse articular cartilage morphology and composition: effects of aging and treadmill running  N. Kotwal, J.
B.J. Ahern, J. Parvizi, R. Boston, T.P. Schaer 
B.J. Ahern, J. Parvizi, R. Boston, T.P. Schaer 
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Determining collagen distribution in articular cartilage using contrast-enhanced micro- computed tomography  H.J. Nieminen, T. Ylitalo, S. Karhula, J.-P.
Quantitative assessment of articular cartilage morphology via EPIC-μCT
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
Quantitative in vivo CT arthrography of the human osteoarthritic knee to estimate cartilage sulphated glycosaminoglycan content: correlation with ex-vivo.
Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering.
Bone and cartilage demonstrate changes localized to bone marrow edema-like lesions within osteoarthritic knees  G.J. Kazakia, D. Kuo, J. Schooler, S.
P. Orth, M. Cucchiarini, S. Wagenpfeil, M.D. Menger, H. Madry 
J. W. MacKay, P. J. Murray, B. Kasmai, G. Johnson, S. T. Donell, A. P
Y. Xia, Ph.D., N. Ramakrishnan, Ph.D., A. Bidthanapally, Ph.D. 
B. Bittersohl, F. R. Miese, H. S. Hosalkar, M. Herten, G. Antoch, R
Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1- CreERT2 transgenic mice  M. Zhu, M.D., Ph.D., M. Chen, Ph.D., A.C. Lichtler,
Expression of the semicarbazide-sensitive amine oxidase in articular cartilage: its role in terminal differentiation of chondrocytes in rat and human 
D. A. Walsh, F. R. C. P. , Ph. D. , C. S. Bonnet, B. Sc. , E. L
Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1- CreERT2 transgenic mice  M. Zhu, M.D., Ph.D., M. Chen, Ph.D., A.C. Lichtler,
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-μCT  L. Xie, A.S.P. Lin, R.E. Guldberg,
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning.
M. Cucchiarini, H. Madry, E.F. Terwilliger 
J. Ranstam  Osteoarthritis and Cartilage 
Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison.
Subchondral bone turnover, but not bone volume, is increased in early stage osteoarthritic lesions in the human hip joint  R. Klose-Jensen, L.B. Hartlev,
H. Sadeghi, D.E.T. Shepherd, D.M. Espino  Osteoarthritis and Cartilage 
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
Spectrocolorimetric evaluation of human articular cartilage
N. Männicke, M. Schöne, M. Oelze, K. Raum  Osteoarthritis and Cartilage 
Degeneration of patellar cartilage in patients with recurrent patellar dislocation following conservative treatment: evaluation with delayed gadolinium-enhanced.
The effects of alendronate in the treatment of experimental osteonecrosis of the hip in adult rabbits  J.G. Hofstaetter, M.D., J. Wang, M.D., Ph.D., J.
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
K. E. Keenan, T. F. Besier, J. M. Pauly, E. Han, J. Rosenberg, R. L
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
R. Parekh, M.K. Lorenzo, S.Y. Shin, A. Pozzi, A.L. Clark 
Articular cartilage metabolism in patients with Kashin–Beck Disease: an endemic osteoarthropathy in China  J. Cao, M.D., S. Li, M.D., M.Sc., Z. Shi, M.Sc.,
Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography  N.J. Willett, T. Thote, M. Hart,
Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair  A.C. Kuo, M.D., Ph.D., J.J. Rodrigo, M.D.,
Lead accumulation in tidemark of articular cartilage
A new method to analyze dGEMRIC measurements in femoroacetabular impingement: preliminary validation against arthroscopic findings  R. Lattanzi, C. Petchprapa,
The association between hip bone marrow lesions and bone mineral density: a cross- sectional and longitudinal population-based study  H. Ahedi, D. Aitken,
Bone loss at subchondral plate in knee osteoarthritis patients with hypertension and type 2 diabetes mellitus  C.Y. Wen, Y. Chen, H.L. Tang, C.H. Yan,
Longitudinal evaluation of T1ρ and T2 spatial distribution in osteoarthritic and healthy medial knee cartilage  J. Schooler, D. Kumar, L. Nardo, C. McCulloch,
Correlation between the MR T2 value at 4
M. L. Roemhildt, B. D. Beynnon, A. E. Gauthier, M. Gardner-Morse, F
D. Kumar, D. C. Karampinos, T. D. MacLeod, W. Lin, L. Nardo, X. Li, T
Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by directional fractal signature method  M.
Presentation transcript:

Differential accumulation of lead and zinc in double-tidemarks of articular cartilage  A. Roschger, J.G. Hofstaetter, B. Pemmer, N. Zoeger, P. Wobrauschek, G. Falkenberg, R. Simon, A. Berzlanovich, H.W. Thaler, P. Roschger, K. Klaushofer, C. Streli  Osteoarthritis and Cartilage  Volume 21, Issue 11, Pages 1707-1715 (November 2013) DOI: 10.1016/j.joca.2013.06.029 Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Spectrum of a single measurement point in a TM obtained after 8 s acquisition time. Bracketed numbers are the maximum counts of the corresponding peaks. Osteoarthritis and Cartilage 2013 21, 1707-1715DOI: (10.1016/j.joca.2013.06.029) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Giemsa-stained histological undecalcified PMMA embedded section of sample #5, exhibiting a double TM region with non-mineralized cartilage (non-mdAC), superficial tidemark (supTM), deep tidemark (deepTM), mineralized cartilage (mdAC), subchondral bone (BONE). Osteoarthritis and Cartilage 2013 21, 1707-1715DOI: (10.1016/j.joca.2013.06.029) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Quantitative backscattered electron image (qBEI), Pb fluorescence map (Pb) and Zn map (Zn) of a double TM region from sample #2. Note that the color-coding scale is changed between the elemental maps. In the illustration the histological regions are abbreviated. Osteoarthritis and Cartilage 2013 21, 1707-1715DOI: (10.1016/j.joca.2013.06.029) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Whisker plots of Zn and Pb levels of the supTM and the deepTM compared to the subchondral bone matrix of the eight analyzed individuals (average age: 46 years, range: 33–85 years, Table I). The ‘+’ indicates a significant difference from a hypothetical equal distribution (dashed line; Wilcoxon-test). (a) Zn concentration in the supTM and the deepTM normalized to the Zn-BONE level. (b) Pb concentration in the supTM and the deepTM normalized to the Pb-BONE level. Osteoarthritis and Cartilage 2013 21, 1707-1715DOI: (10.1016/j.joca.2013.06.029) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Concentration ratios between different histological regions. A ‘+’ indicates a significant difference from a hypothetical equal distribution (dashed line; Wilcoxon-test): (a) Ratios of Ca, Zn, and Pb between deepTM and supTM of the eight analyzed samples (average individual age: 46 years, range: 33–85 years, Table I). The circles represent a single sample (#5) with outlying low Pb content. (b) Ratios of Ca, Zn, and Pb between mdAC and BONE (n = 7, in sample #5 no mdAC could be evaluated). Osteoarthritis and Cartilage 2013 21, 1707-1715DOI: (10.1016/j.joca.2013.06.029) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 (a) Pb/Ca countrate ratios in regions representative for BONE and for the deepTM. (b) Zn/Ca countrate ratios in regions representative for BONE and for the deepTM. The empty circles represent a single sample (#5) with outlying low Pb content. Osteoarthritis and Cartilage 2013 21, 1707-1715DOI: (10.1016/j.joca.2013.06.029) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 7 (a) Comparison of single TMs (STs) with double TMs (supTM, deepTM) in two of the samples (sample #4: filled circles, sample #5: empty circles). Each datapoint represents the average Pb intensity ratio of the TM to BONE of three measurement fields. (b) Quantitative backscattered electron image (qBEI) of an osteoarthritic bone (sample #9) sample with a superimposed lead X-ray fluorescence map. The cartilage including the TM is totally worn-out. Osteoarthritis and Cartilage 2013 21, 1707-1715DOI: (10.1016/j.joca.2013.06.029) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions