Final results of HDAC analysis

Slides:



Advertisements
Similar presentations
Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Simulation of skylight polarization with the DAK model and.
Advertisements

Stefan Roesler SC-RP/CERN on behalf of the CERN-SLAC RP Collaboration
Plasma-induced Sputtering & Heating of Titan’s Atmosphere R. E. Johnson & O.J. Tucker Goal Understand role of the plasma in the evolution of Titan’s atmosphere.
PRECIPITATION OF HIGH-ENERGY PROTONS AND HYDROGEN ATOMS INTO THE UPPER ATMOSPHERES OF MARS AND VENUS Valery I. Shematovich Institute of Astronomy, Russian.
New approach to simulate radiation damage to single-crystal diamonds with SILVACO TCAD Florian Kassel, Moritz Guthoff, Anne Dabrowski, Wim de Boer.
Toward a global model of low-lying vibrational states of methyl cyanide, CH 3 CN: the v 4 = 1 state at 920 cm –1 and its interactions with nearby states.
Pascal Storchi Daniel den Hoed Cancer Center
Biomarkers in Super Earth Atmospheres: Photochemical Responses John Lee Grenfell Zentrum für Astronomie und Astrophysik, Technische Universität (TU) Berlin.
Revised tholin profile for the atmosphere of Titan Mao-Chang Liang 1, J. A. Kammer, X. Zhang 3, D. Shemansky 4, Y. L. Yung 2 1 Research Center for Environmental.
The Nightglow Spectrum of Jupiter as seen by the Alice UV Spectrograph on New Horizons A. J. Bayless 1, G. R. Gladstone 1, J.-Y. Chaufray 2, K. D. Retherford.
Microphysics of the radiative transfer. Numerical integration of RT in a simplest case Local Thermodynamical Equilibrium (LTE, all microprocesses are.
Titan’s Thermospheric Response to Various Plasma Environments Joseph H. Westlake Doctoral Candidate The University of Texas at San Antonio Southwest Research.
HiRes Usage. Outline ● Shower energy ( Size, dE/dx ) ● Atmospheric profile ( stdz76, radiosonde) ● Rayleigh Scattering ● Aerosols Model ( density, variability.
March 13, CCLDAS Particle-in-Cell Simulations of the Lunar Dusty Plasma Environment A. Poppe & M. Horányi Laboratory for Atmospheric and Space Physics.
Dynamical modeling of the DI dust ejecta cloud Tanyu Bonev (Institute of Astronomy and National Astronomical Observatory, Bulgaria) and the ESO DI observing.
November 2006 MERCURY OBSERVATIONS - JUNE 2006 DATA REVIEW MEETING Review of Physical Processes and Modeling Approaches "A summary of uncertain/debated.
Ch. 5 - Basic Definitions Specific intensity/mean intensity Flux
Monte Carlo Atmosphere Model Dana Crider, CUA Rosemary Killen, U. Md.
Electromagnetic Radiation
Mercury’s Seasonal Na Exosphere Data from MESSENGER’s MASCS UVVS instrument Tim Cassidy, Aimee Merkel, Bill McClintock, Matt Burger Menelaos Sarantos,
The state of the plasma sheet and atmosphere at Europa D. E. Shemansky 1, Y. L. Yung 2, X. Liu 1, J. Yoshii 1, C. J. Hansen 3, A. Hendrix 4, L. W. Esposito.
DMRT-ML Studies on Remote Sensing of Ice Sheet Subsurface Temperatures Mustafa Aksoy and Joel T. Johnson 02/25/2014.
Marc Schröder, FUB Tutorial, De Bilt, 10.´04 Photon path length distributions and detailed microphysical parameterisations Marc Schröder Institut für Weltraumwissenschaften,
The experience of BEST Heike Rauer and the BEST Team Institut für Planetenforschung Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) and Zentrum für.
1 The Organic Aerosols of Titan’s Atmosphere Christophe Sotin, Patricia M. Beauchamp and Wayne Zimmerman Jet Propulsion Laboratory, California Institute.
Status of Surface Sensitive Bolometers University of Insubria – Como, Italy INFN – Milano, Italy Prague, Chiara Salvioni.
INFSO-RI Enabling Grids for E-sciencE Workflows in Fusion applications José Luis Vázquez-Poletti Universidad.
Predicting Engine Exhaust Plume Spectral Radiance & Transmittance Engineering Project MANE 6980 – Spring 2010 Wilson Braz.
Österreichische Akademie der Wissenschaften (ÖAW) / Institut für Weltraumforschung (IWF), Graz, Austria, iwf.oeaw.ac.atDownload:2014.
COMPARATIVE TEMPERATURE RETRIEVALS BASED ON VIRTIS/VEX AND PMV/VENERA-15 RADIATION MEASUREMENTS OVER THE NORTHERN HEMISPHERE OF VENUS R. Haus (1), G. Arnold.
Evaluation of the Cu atomic density during sputter deposition process with optical emission spectroscopy Takeo Nakano, Kouji Tanaka and Shigeru Baba Dept.
Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California,
IMPACT Laboratory investigations of electrostatic dust lofting on comet and asteroid (airless bodies) surfaces Xu Wang Joseph Schwan, Hsiang-Wen Hsu, Mihály.
Studying the Venus terminator thermal structure observed by SOIR/VEx with a 1D radiative transfer model A. Mahieux 1,2,3, J. T. Erwin 3, S. Chamberlain.
1 Improving SO 2 AMFs: Comparison of different approaches P. Hedelt, P. Valks, D. Loyola Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Institut.
The Gaseous Universe Section 3.4 of the text. Phases of Matter There are four: Solid - rare, in astronomy Liquid - rarest in astronomy: examples include.
A new modelling approach for DACs and SACs regions in the atmospheres of hot emission stars Danezis E., *Lyratzi E, *Antoniou A., **Popović L. Č., **Dimitriević.
Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer †, D. E. Shemansky ‡, X. Zhang †, and Y. L. Yung † † California Institute of Technology, Pasadena,
Albert Riego, Guillem Cortes, Francisco Calviño July 22 th, 2015 Universitat Politecnica de Catalunya, Barcelona (Spain) Third BRIKEN WORKSHOP – IFIC (Valencia,
The Atom Aim: How has the model of the atom change over the years?
Titan Airglow Spectra From 2004 and 2008 and Laboratory Results for UVIS, ISS and VIMS (800-11,000 Å) JOSEPH AJELLO JPL JACQUES GUSTIN MICHAEL STEVENS.
Cold streams as Lyman-alpha blobs Collaborators: Avishai Dekel, Amiel Sternberg, Daniel Ceverino, Romain Teyssier, Joel Primack Tobias Goerdt.
(on behalf of SIDDHARTA-2 collaboration)
ANALYSIS OF SEQUENCE OF IMAGES MTP003/STP004/TRAIL_001 & TRAIL_002
Date: Thursday, June 5th Topic: Layers of the Atmosphere
D. E. Shemansky† , J. A. Kammer ‡ , X. Zhang ‡ & Y. L. Yung‡
Characterization of Field Line Topologies Near the Magnetopause Using Electron Pitch Angle Measurements D. S. Payne1, M. Argall1, R. Torbert1, I. Dors1,
Analysis of Density Waves in UVIS Ring Stellar Occultations
Shyama Narendranath Space Astronomy Group ISRO Satellite Centre
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
UVIS Saturn Atmosphere Occultation Prospectus
Latest Results of HDAC analysis
Spectral appearance of terrestrial exoplanets
HDAC analysis: Hydrogen in Titan‘s exosphere
Titan: FUV & EUV Spectra Limb, Dayglow, Nightglow & Eclipse
RADIATION AND COMBUSTION PHENOMENA
Photometric observations by HDAC onboard Cassini: sensitivity and first comparison with models Yuri Skorov, Horst Uwe Keller, Ralf Reulke, Karl-Heinz.
Study of 20 January 2005 solar flare area by certain gamma-ray lines
Titan Nitrogen Emissions
Monitoring Saturn's Upper Atmosphere Density Variations Using
Saturn temperature and H2 profiles from Solar EUV occultations
Infrared emission from dust and gas in galaxies
By Narayan Adhikari Charles Woodman
Microdosimetric Distributions for a Mini-TEPC due to Photon Radiation
Revised tholin profile for the atmosphere of Titan
Model Calculations of the Ionosphere of Titan during Eclipse Conditions Karin Ågren IRF-U, LTU.
Titan Airglow FUV Limb Spectra From Cassini UVIS Observations
NLSI All-Hands Meeting
UVIS Titan T0, TA Analysis
From January Team Meeting
Presentation transcript:

Final results of HDAC analysis P. Hedelt(1), Y. Ito(2,3), H. U. Keller(2), R. Reulke(3), P. Wurz(4), H. Lammer(5), H. Rauer(1,6), L. Esposito(7) Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR) Max Planck Institut für Sonnensystemforschung (MPS) Japan Manned Space Systems Corporation, Tsukuba, Japan Institut für Verkehrsforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR) Abteilung für Weltraumforschung und Planetologie, Universität Bern Institut für Weltraumforschung, Österreichische Akademie der Wissenschaften Zentrum für Astronomie und Astrophysik, Technische Universität Berlin (TUB) Laboratory for Atmospheric and Space Physics, University of Colorado

HDAC T9 measurement UVIS Team Meeting 2009 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt 2 2 2 2 2 2 2

Difference signal UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting 2009 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt 3 3 3 3 3 3 3 3

Radiative transfer modeling Parameter variation: Exosphere atomic hydrogen distribution: Chamberlain model (Chamberlain, 1963) Particle Monte Carlo model (Wurz & Lammer, 2003) Exobase hydrogen density Exospheric temperature  Fit to data UVIS Team Meeting 2009 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt 4 4 4 4 4 4 4 4 4

Exospheric densities Particle model H Chamberlain model CH4 UVIS Team Meeting 2009 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt 5 5 5 5 5 5 5 5 5

Density Variation Exobase densities in the literature nH = 4.2x103 cm-3 (Yung, 1984 - model) nH = 8.0x103 cm-3 (Toublanc, 1995 - model) nH = 1.0x104 cm-3 (Broadfoot, et al. 1981 - data) nH = 4.6x104 cm-3 (Garnier, et al. 2007 - model) nH = 7.0x104 cm-3 (Krasnopolsky, et al. 2009 - model) nH = 8.0x104 cm-3 (De la Haye, et al., 2007 - model) UVIS Team Meeting 2009 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt 6 6 6 6 6 6 6 6 6 6 6

Density Variation Chamberlain Model UVIS Team Meeting 2009 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt 7 7 7 7 7 7 7 7 7 7 7

Density Variation Particle Model UVIS Team Meeting 2009 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt 8 8 8 8 8 8 8 8 8 8 8

Difference signal during c/a Particle model Chamberlain model UVIS Team Meeting 2009 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt 9 9 9 9 9 9 9 9 9 9

Difference signal during ingress Chamberlain model Particle model UVIS Team Meeting 2009 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt 10 10 10 10 10 10 10 10 10 10

Temperature Variation Exosphere temperatures in the literature: De la Haye et al. (2008): 152.8 ± 4.6 K (TA) 149.0 ± 9.2 K (TB) 157.4 ± 4.8 (T5) UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting 2009 Pascal Hedelt 11 11 11 11 11 11 11 11 11 11 11 11

Temperature Variation Exobase H density: 8x104 cm-3, Particle model profile UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting 2009 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt 12 12 12 12 12 12 12 12 12 12 12 12

Fit to data Best fitting density distribution using least squares fit: Particle model: Exobase H density nH=9x104 cm-3 Chamberlain model: Exobase density nH=2x104 cm-3 UVIS Team Meeting 2009 Pascal Hedelt 13 13 13 13 13 13 13 13 13 13 13 13 13

Fit to data: Chamberlain model UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting 2009 Pascal Hedelt 14 14 14 14 14 14

Fit to data: Particle model UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting 2009 Pascal Hedelt 15 15 15 15 15 15

Best fitting H profile Particle model Chamberlain model UVIS Team Meeting 2009 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt 16 16 16 16 16 16

Comparison with measurement UVIS Team Meeting 2009 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt 17 17 17 17 17 17

Comparison with measurement: Removing the background UVIS Team Meeting 2009 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt 18 18 18 18 18 18

Summary & Conclusion Using HDAC data we are able to determine atomic Good agreement between model and data Exospheric temperature has no influence  Best fit using Chamberlain model: nH,Exobase= 2.0x104 cm-3 validated for Earth only, static model  Best fit using Particle MC model: nH,Exobase= 9.0x104 cm-3 validated for Mercury & Mars, dynamic model From latest calculations (De la Haye, et al. 2007): nH,Exobase= 8.0x104 cm-3  Good agreement with Particle model distribution Background signal in HDAC data: about 12,000 cts (430 R) Titan Lyman α dayside brightness: 179±10 R (Ajello, et al. 2008: 208 R) nightside brightness: 50±4 R (Ajello, et al. 2008: 80 R) Using HDAC data we are able to determine atomic hydrogen distribution in Titan’s exosphere!!! UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting 2009 Pascal Hedelt 19

Outlook: T66 & T67 UVIS Team Meeting 2009 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt 20 20

Outlook: T66 & T67 UVIS Team Meeting 2009 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt 21 21

Thanks for your attention! UVIS Team Meeting 2009 Pascal Hedelt

Aims & Scope Using HDAC data gathered during T9, the distribution of atomic hydrogen in Titans exosphere is investigated: Calculate exospheric emission of resonantly scattered Hydrogen Ly-Alpha from Titan Simulate HDAC measurement during the Cassini/Titan T9 encounter Little is known about Titan‘s hydrogen exosphere Vary input parameters Determine exospheric parameters UVIS Team Meeting 2009 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt 24 24 24 24 24 24 24

Radiative transfer model (1) Apply Monte Carlo to solve RTE: 40,000,000 photons started at sunlit side of upper exosphere layer Scattered by H (isotropically) Absorbed by CH4 Trace until: Absorbed by methane Reach model boundaries Store scattering positions + WL + Directions

Radiative transfer model (2) Simulate T9 flyby: Apply „splitting“ technique: Photons are emitted in direction of detector Calculate transmission to detector Apply HDAC absorption pattern

Density model description Chamberlain model Maxwellian velocity distribution at exobase Use Liouville theorem to derive exospheric densities Static contribution of ballistic/escaping orbits Particle MC model Dynamic MC approach, single particles started at exobase with random energy & ejection angle UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting, Boulder, Colorado 2008/06/22-24 Pascal Hedelt UVIS Team Meeting 2009 Pascal Hedelt 27 27 27 27 27 27 27 27 27 27