Figure Brain MRI of the patient throughout the disease course(A) Brain MRI at the time of cerebral toxoplasmosis diagnosis (a) and after 1 month of toxoplasmosis.

Slides:



Advertisements
Similar presentations
Figure 2 ALSFRS-R changes (A) Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) slope after 6 months of treatment without (left)
Advertisements

Figure 1 The topographical model of multiple sclerosis, clinical (A) and subclinical (B) views The topographical model of multiple sclerosis, clinical.
Figure 3 Brain MRI findings in patients with MOG-Ab Extensive brain lesions with large diameter (A and B), posterior reversible encephalopathy–like lesions.
Figure 1 Box plot of the venous diameter in lesions
Figure 1 Brain MRI findings in the present case
Figure MRI of anti-MOG-IgG–associated myelitis
Figure 2 Association of serum IgG reactivity with MRI measures of disease severity Association of serum IgG reactivity with MRI measures of disease severity.
Figure 2 Orbital MRI findings One-third of myelin oligodendrocyte glycoprotein antibody–positive patients revealed extensive enhancement patterns that.
Figure 3 Example of venous narrowing
Figure 3 JCV index changes in JCV+ patients
Figure Immune checkpoint inhibitor–induced encephalitis before and after treatment with natalizumab Immune checkpoint inhibitor–induced encephalitis before.
Figure Radiographic and histopathologic findings (A) Brain MRI at presentation shows multiple areas of T2 hyperintensity in the mesial temporal lobes,
Figure 1. Brain MRI follow-up of Sjögren syndrome–associated type II mixed cryoglobulinemic cerebral vasculitis treated with rituximab Brain MRI follow-up.
Figure 3. MRI of compressive optic neuropathy caused by dural lesions in sarcoidosis MRI of compressive optic neuropathy caused by dural lesions in sarcoidosis.
Figure Longitudinal MRI study data demonstrating evolution of central pontine myelinolysis(A, B) Axial T2-weighted MRI of the brain from January 9, 2014,
Figure Radiologic and histopathologic findings in a patient with IgG4-related intracranial hypertrophic pachymeningitis(A–D) Radiologic findings over 10.
Figure 1 Cerebral MRI during the disease course Cerebral MRI with multiple cerebral supratentorial lesions during the disease course: periventricular lesions.
Figure 1 MOR103 sequential-dose trial flowchart of study population with multiple sclerosis aPatients received 2 doses of study drug before trial withdrawal.
Figure 2 T2-weighted and subtraction images
Figure 1 8-Iso-PGF2α levels in CSF of patients with MS and controlsCSF 8-iso-prostaglandin F2α (8-iso-PGF2α) levels were estimated using an ELISA. (A)
Figure 2 Exemplary MRI of a patient with contrast enhancement on postcontrast FLAIR MRI of a 54-year-old patient with viral meningitis caused by varicella-zoster.
Figure 2 7T MRI can differentiate between early PML and MS lesions Two different patterns of brain lesions were observed using 7T MRI: ring-enhancing lesions.
Figure 1 Peripheral blood leukocyte subset counts during dimethyl fumarate treatmentComplete blood cell counts were obtained at baseline (n = 34) and at.
Figure 3 Ultra-high-field MRI at 7.0T (patients 5 and 6)‏
Figure 2 DTI values between the hepatitis C group and controls(A) DTI FA values, (B) DTI diffusion values. *Statistically significant at FDR-adjusted p.
Figure 1 White matter lesion central vein visibility in MS and absence in small vessel disease (SVD)‏ White matter lesion central vein visibility in MS.
Figure 2 Lesion localization visualized in the top view of the model
Figure 1 MRI of inflammatory myelitis before and after treatment
Figure 1 Schematic overview of flow cytometry Schematic overview on the analysis of peripheral immune cells by flow cytometry. Schematic overview of flow.
Figure 1 Evolution of blood cell counts during 18-month treatment and follow-up (A) Mean white blood cell count, (B) mean lymphocyte count, (C) mean eosinophil.
Figure 4 Pattern of relapse in patients with MOG-Ab Five myelin oligodendrocyte glycoprotein antibody (MOG-Ab)–positive patients experienced a relapse,
Figure 2 Cerebral and spinal MRI (A) Restricted diffusion of both optic nerves (arrows) on diffusion-weighted and apparent diffusion coefficient imaging.
Figure 1 JCV serostatus JCV serostatus (A) Serostatus of 1,921 natalizumab-treated patients with multiple sclerosis, with JCV− patients shown in black.
Figure 5 Pairwise correlations between selected patient-reported outcomes and performance tests in patients with MS (A) The number of pairwise correlations.
Figure Clinical and radiologic course(A) The T2 contrast-enhanced sequence on day 3 shows an extensive central cord lesion extending from C2 to T7. Clinical.
Figure Postcontrast axial and coronal brain MRI in a patient with CLIPPERS treated with hydroxychloroquineT1-weighted spin echo post IV gadolinium contrast.
Figure 1 Annual trend in specimen type submitted as first sample for aquaporin-4 immunoglobulin G testing (serum only vs CSF only vs both) from 101,065.
Figure 3 Correlation of lipid indexes to MRI measures of disease severity in multiple sclerosis Correlation of lipid indexes to MRI measures of disease.
Figure 5 Autopsy Mycoplasma DNA analysis
Figure MRI brain 6 weeks post admission (A–C) Symmetrical high signal changes on fluid-attenuated inversion recovery sequences predominantly affecting.
Figure 1 Evolution of MRI findings during interleukin (IL)–7 therapy
Figure 3 Clinical and MRI outcomes by quartiles of increasing CD56bright natural killer (NK) cell countsAll data are mean and upper 95% confidence interval.
Figure 1 Anti-Epstein-Barr virus nuclear antigen-1 IgG quartile antibody status differences in MRI measures Anti-Epstein-Barr virus nuclear antigen-1 IgG.
Figure 2 Peripheral blood lymphocyte subset counts during dimethyl fumarate treatment(A) Lymphocyte subsets were obtained at baseline (n = 21) and at month.
Figure Leptomeningeal inflammationPostcontrast T1-weighted MRI: abnormal leptomeningeal enhancement over the frontoparietal lobes and interhemispheric.
Figure 2 Clinical and autoantibody status of 2 CNTN1 or NF155+ patients not receiving rituximab Despite corticosteroids and methotrexate treatment, patient.
Figure 1 MRI findings over time
Figure 2 Pre- and posttreatment contrast-enhanced MRI of second toxoplasmosis lesion in case 1(A) Contrast-enhanced MRI demonstrated a second ring-enhancing.
Figure 1 Brain MRI Brain MRI (A) Axial fluid-attenuated inversion-recovery images show perilesional edema in both cerebellar hemisphere and hypointense.
Figure 2 Assessment of systemic disease activityTc99 scintigraphy (A) and fluorodeoxyglucose PET imaging (B, C) at disease onset 2 years before acute deterioration.
Figure 2 Frequency of the proportion of total WMLs with central veins in PPMS, RRMS, and SVD Frequency of the proportion of total WMLs with central veins.
Figure 1 Peripheral blood lymphocyte counts during dose titrationB-lymphocyte (CD19+; A) and total lymphocyte (CD45+; B) counts (cells/µL) in peripheral.
Figure Spinal cord imaging (A, B) Sagittal and axial T2-weighted cervical spine MRI demonstrating hyperintensities in the central gray matter of patient.
Figure 2 Kaplan-Meier survival curves for the fingolimod cohort In each graph, bottom tertile: solid line; middle tertile: long dashed line; top tertile:
Figure 1 Classical pathway and lectin pathway activity in patients with multifocal motor neuropathy and controls Classical pathway (CP) activity (A) and.
Yian Gu et al. Neurol Neuroimmunol Neuroinflamm 2019;6:e521
Ingo Kleiter et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e504
Gitanjali Das et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e453
Figure Serial brain MRI of the patient with encephalitis and spontaneous recovery accompanying IgLON5 autoimmunity Serial brain MRI of the patient with.
Figure 1 MRIs (case 1)‏ MRIs (case 1) An enlarging T2 lesion in the cerebral white matter near the angular gyrus and a new lesion in the left middle cerebellar.
Figure 2 MRIs (cases 2 and 3)‏
Figure 3 Freedom from clinical disease activity during 36 months of fingolimod treatment Freedom from clinical disease activity during 36 months of fingolimod.
Figure 4 Patient 3 MRI evolution over time
Figure 2 Clinical data and variation of sNfL levels of patients 4–6 with ATZ-treated MS Clinical data and variation of sNfL levels of patients 4–6 with.
Figure 3 Patient 2 MRI evolution over time before relapse
Figure 2 Time from incident ADS event to MS diagnosis
Figure 2. Percentage of CD16− monocytes in the blood is reduced during disease progression Percentage of CD16− monocytes in the blood is reduced during.
Figure 1 Axial FLAIR brain MRI obtained on admission to the ICU demonstrated (A1) old hyperintense subcortical lesions (arrowhead), new superimposed on.
Figure (A and B) Effect of canakinumab in muscle strength measured in each patient as mean bilateral GF (A) and TMS (B) during the mean study period of.
Figure 4 Longitudinal analysis of peripheral immune cell composition Frequency of naive, central memory (Tcm), and effector memory (Tem) CD4 T cells over.
Presentation transcript:

Figure Brain MRI of the patient throughout the disease course(A) Brain MRI at the time of cerebral toxoplasmosis diagnosis (a) and after 1 month of toxoplasmosis treatment (b). Brain MRI of the patient throughout the disease course(A) Brain MRI at the time of cerebral toxoplasmosis diagnosis (a) and after 1 month of toxoplasmosis treatment (b). (B) Brain MRI at admission showing increase in lesion number and contrast uptake. (C) Brain MRI showing radiologic response to toxoplasmosis treatment. (D) Brain MRI after progressive clinical deterioration showing increase in lesion number and multiple new enhancing vessels in the perforator and peripheral distribution of middle cerebral artery territories. (E) Brain MRI after 2 months of foscarnet treatment. Despite significant clinical improvement, radiologic lesions persist. Inês Brás Marques et al. Neurol Neuroimmunol Neuroinflamm 2015;2:e74 © 2015 American Academy of Neurology