Heredity, Gene Regulation, and Development

Slides:



Advertisements
Similar presentations
The lac operon.
Advertisements

Chapter 18 Regulation of Gene Expression in Prokaryotes
Ch 18 Gene Regulation. Consider: A multicellular organism (Pliny) Do each of his cells have the same genes? Yes, with an exception: germ cells are haploid.
1 GENE CONTROL LACTOSE.
XII. Gene Regulation.
Medical Genetics & Genomics
 Discovered in the bacterium, E. coli  Used as a model for gene regulation  An operon is a set of genes and the switches that control the expression.
The Lac Operon Regulation of Prokaryotic Genes. n Scientists investigated a transcriptionally regulation system using the lactose metabolism system in.
Genetic Regulatory Mechanisms
1 The Lac Operon 1961, Jacob and Monod E. coli and other bacteria Bacterial Genes Many genes constitutively expressed “housekeeping” genes Other genes.
The Lac Operon. Lactose = Galactose and Glucose Cells adapt to their environment by turning on and off genes. An operon is a cluster of bacterial genes.
Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory III. Allelic, Genic, and Environmental Interactions.
Announcements 1. Reading Ch. 15: skim btm Look over problems Ch. 15: 5, 6, 7.
Chapter 18 Regulation of Gene Expression.
To understand the concept of the gene function control. To understand the concept of the gene function control. To describe the operon model of prokaryotic.
The Chapter 15 Homework is due on Wednesday, February 4 th at 11:59 pm.
Regulation of gene expression References: 1.Stryer: “Biochemistry”, 5 th Ed. 2.Hames & Hooper: “Instant Notes in Biochemistry”, 2 nd Ed.
Bacterial Keys to Success Respond quickly to environmental changes –Simultaneous transcription and translation Avoid wasteful activities by using biochemical.
Draw 8 boxes on your paper
Goals of today’s lecture 1)Describe the basics of prokaryotic gene regulation -operons, negative and positive regulation 2)Illustrate the use of genetics.
GENE REGULATION. Virtually every cell in your body contains a complete set of genes Virtually every cell in your body contains a complete set of genes.
XII. Gene Regulation. - Overview: All cells in an organism contain the same genetic information; the key to tissue specialization is gene regulation –
Prokaryotic Regulation Regulation of Gene Expression – Part I Spring Althoff Reference: Mader & Windelspecht Ch. 13) Lec 18.
Gene Expression and Regulation
Sources of VariationAgents of Change MutationN.S. RecombinationDrift - crossing overMigration - independent assortmentMutation Non-random Mating VARIATION.
Bacterial Gene Expression and Regulation
Gene Regulation Gene Regulation in Prokaryotes – the Jacob-Monad Model Gene Regulation in Prokaryotes – the Jacob-Monad Model certain genes are transcribed.
Gene Regulation, Part 1 Lecture 15 Fall Metabolic Control in Bacteria Regulate enzymes already present –Feedback Inhibition –Fast response Control.
Regulation of Gene Expression Prokaryotes
CONTROL OF GENE EXPRESSION The development of an organism must involve the switching on and off of genes in an orderly manner. This is not fully understood.
REVIEW SESSION 5:30 PM Wednesday, September 15 5:30 PM SHANTZ 242 E.
1 Gene Regulation Organisms have lots of genetic information, but they don’t necessarily want to use all of it (or use it fully) at one particular time.
How Does A Cell Know? Which Gene To Express Which Gene To Express& Which Gene Should Stay Silent? Which Gene Should Stay Silent?
Gene Expression and Regulation
1 Molecular genetics of bacteria Gene regulation and regulation of metabolism Genetic exchange among bacteria Bacteria are successful because 1.They carefully.
© 2011 Pearson Education, Inc. Lectures by Stephanie Scher Pandolfi BIOLOGICAL SCIENCE FOURTH EDITION SCOTT FREEMAN 17 Control of Gene Expression in Bacteria.
Are genes always being transcribed and translated?
Control of Metabolic Pathways Higher Human Biology Unit 1 – Section 6 Metabolic Pathways.
Chapter 15. I. Prokaryotic Gene Control  A. Conserves Energy and Resources by  1. only activating proteins when necessary  a. don’t make tryptophan.
Chapter 15. I. Prokaryotic Gene Control  A. Conserves Energy and Resources by  1. only activating proteins when necessary  a. don’t make tryptophan.
Regulation of Prokaryotic and Eukaryotic Gene Expression
Higher Human Biology Subtopic 6 (b)
Gene Expression and Regulation
Chapter 15 Gene Control.
Control of Metabolic Pathways
Control of Gene Expression
GENE EXPRESSION AND REGULATION
Lac Operon Lactose is a disaccharide used an energy source for bacteria when glucose is not available in environment Catabolism of lactose only takes place.
Regulation of Gene Expression in Bacteria and Their Viruses
Lect 16: Lac Operon.
Control of Gene Expression
Lac Operon.
Regulation of Gene Expression
Regulation of Gene Expression
Agenda 3/16 Genes Expression Warm Up Prokaryotic Control Lecture
Chapter 15 Gene Control.
Regulation of Gene Expression
Control of Prokaryotic (Bacterial) Genes Different from Eukaryotes!
Chapter 15 Operons.
Gene Regulation certain genes are transcribed all the time – constitutive genes synthesis of some proteins is regulated and are produced only when needed.
The control of gene expression enable individual
DEPARTMENT OF MICROBIOLOGY AND IMMUNOLOGY
Transcriptional Regulation in Prokaryotes.
Gene Regulation in Prokaryotes
mitosis Gene Regulation A. Overview
Principles of Molecular Biology
Gene Regulation certain genes are transcribed all the time – constitutive genes synthesis of some proteins is regulated and are produced only when needed.
Objective 3: TSWBAT recognize the processes by which bacteria respond to environmental changes by regulating transcription.
Molecular genetics of bacteria
Control of Prokaryotic (Bacterial) Genes
Presentation transcript:

Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory III. Allelic, Genic, and Environmental Interactions IV. Sex Determination and Sex Linkage V. Linkage VI. Mutation VII. Gene Regulation

Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory III. Allelic, Genic, and Environmental Interactions IV. Sex Determination and Sex Linkage V. Linkage VI. Mutation VII. Gene Regulation A. Overview All cells in an organism contain the same genetic information; the key to tissue specialization is gene regulation – reading some genes in some cells and other genes in other cells.

VII. Gene Regulation A. Overview All cells in an organism contain the same genetic information; the key to tissue specialization is gene regulation – reading some genes in some cells and other genes in other cells. B. Terminology Inducers turn a gene on… Repressors turn a gene off…

VII. Gene Regulation C. The lac Operon in E. coli An “operon” is a region of genes that are regulated as a unit – it typically encodes > 1 protein involved in a particular metabolic pathway.

VII. Gene Regulation C. The lac Operon in E. coli When lactose is present, E. coli produce three enzymes involved in lactose metabolism. Lactose is broken into glucose and galactose, and galactose is modified into glucose, too. Glucose is then metabolized in aerobic respiration pathways to harvest energy (ATP). When lactose is absent, E. coli does not make these enzymes and saves energy and amino acids. How do these little bacteria KNOW? : )

VII. Gene Regulation C. The lac Operon in E. coli Lac Y - permease – increases absorption of lactose Lac Z – B-galactosidase – cleaves lactose into glucose and galactose Lac A – transacetylase – may code for enzymes that detoxify waste products of lactose metabolism.

VII. Gene Regulation C. The lac Operon in E. coli 1960 – Jacob and Monod proposed that this was an inducible system under negative control. (Because the presence of the substrate INDUCES transcription by SHUTTING OFF regulation). Repressor Gene Operator Repressor RNA Poly

VII. Gene Regulation C. The lac Operon in E. coli 1960 – Jacob and Monod proposed that this was an inducible system under negative control. (Because the presence of the substrate INDUCES transcription by SHUTTING OFF regulation). LACTOSE

The binding of lactose changes the shape of the repressor (allosteric reaction) and it can’t bind to the operator. VII. Gene Regulation C. The lac Operon in E. coli 1960 – Jacob and Monod proposed that this was an inducible system under negative control. (Because the presence of the substrate INDUCES transcription by SHUTTING OFF regulation). LACTOSE

VII. Gene Regulation C. The lac Operon in E. coli Mutant analyses confirmed these results:

VII. Gene Regulation C. The lac Operon in E. coli Mutant analyses confirmed these results:

VII. Gene Regulation C. The lac Operon in E. coli But it is even more complicated… if glucose AND lactose are present, the operon is OFF. This is adaptive, because it’s glucose the cell needs. If glucose is present, there is no benefit to break lactose down to get it. BUT HOW?

C. The lac Operon in E. coli VII. Gene Regulation C. The lac Operon in E. coli Within the promoter, there is a binding site for a Catabolic Activating Protein – basically a “transcription factor”. CAP needs to bind in order for the RNA Polymerase to bind. Cyclic-AMP activates CAP, causing an allosteric reaction so it can bind the promoter. , lactose present

C. The lac Operon in E. coli VII. Gene Regulation C. The lac Operon in E. coli Within the promoter, there is a binding site for a Catabolic Activating Protein – basically a “transcription factor”. CAP needs to bind in order for the RNA Polymerase to bind. Cyclic-AMP activates CAP, causing an allosteric reaction so it can bind the promoter. So, the binding of CAP stimulates transcription, exerting positive control. , lactose present

C. The lac Operon in E. coli VII. Gene Regulation C. The lac Operon in E. coli When Glucose is present, the concentration of c-AMP declines, it does not bind to CAP, and CAP does not bind to the Promoter; so the RNA Poly does not bind and the genes are off. , lactose present

VII. Gene Regulation C. The lac Operon in E. coli When Glucose is present, the concentration of c-AMP declines, it does not bind to CAP, and CAP does not bind to the Promoter; so the RNA Poly does not bind and the genes are off. So, the lac operon is regulated first by the presence/absence of glucose; the needed nutrient… and then by the presence of lactose, which could be metabolized to produce glucose if necessary.

VII. Gene Regulation C. The lac Operon in E. coli D. Summary These are the transcription factors that bind to enhancer and repressor regions of the human metallothionien IIA gene promoter region!! - What does having all these modifiers allow for?

C. The lac Operon in E. coli D. Summary VII. Gene Regulation C. The lac Operon in E. coli D. Summary - Many proteins can be made from the same gene, by splicing the m-RNA differently. Humans have 20-30K genes, but several 100,000 proteins! A calcium regulator in the thyroid A hormone made in the brain

VII. Gene Regulation C. The lac Operon in E. coli D. Summary - miRNA (microRNA): quite similar, but as ss-RNA they bind m-RNA and just stop translation. They are involved in developmental regulation .

VII. Gene Regulation C. The lac Operon in E. coli D. Summary - Post-translational processing

zygote mitosis