In all things of nature there is something of the marvelous.

Slides:



Advertisements
Similar presentations
Solving Multiplication and Division Equations. Lesson Objective Students will be able to solve multiplication and division equations.
Advertisements

Warm Up 1. A=lw for w 2.3. Solve v + 6 = 4v – (2x – 4) = 4x + 4.
2.2 Solving Two-Step Equations I can solve two-step equations in one variable.
Chapter 2 Sections 5-6 Problem Solving and Formulas.
Solving systems of equations with 2 variables
Warm Up Solve the equation = n = 8x – 5 – (3m + 3) = (-3p + 5) –5(3p – 4) = (12 + 3n) = -( n)
Solving Equations Medina1 Variables on Both Sides.
Use the Distributive Property to: 1) simplify expressions 2) Solve equations.
Ratio and Proportion 7-1.
I can solve one-step equations in one variable.. Equations that have the same solutions. In order to solve a one-step equation, you can use the properties.
Distribute and Combine Like Terms Applications. What is the area of the following shape? 5 2x-3 1.
Lesson 5.6-Number Problems Obj: To solve # word problems.
2.3 Solving Multi-Step Equations
2.3 Solving Multi- Step Equations. Solving Multi-Steps Equations 1. Clear the equation of fractions and decimals. 2. Use the Distribution Property to.
Solving Equations Medina1 Multi-Step Equations. Steps to solve Medina2 3. Use inverse of addition or subtraction You may not have to do all the steps.
Solving Equations with Variables on Both Sides Module 4 Lesson 4.
Practice 2.2 Solving Two Step Equations.
Lesson 1 Chapter 3. Objectives Solve equations using addition and subtraction.
3-1 & 3-2 Solving Multi-Step Equations (p. 119 & p. 126) Algebra 1 Prentice Hall, 2007.
2.1 Solving One Step Equations. Addition Property of Equality For every real number a, b, and c, if a = b, then a + c = b + c. Example 8 = For every.
Happy Tuesday  Ready for a great 4 day week. Warm – up #3.
4.8 Polynomial Word Problems. a) Define the variable, b) Write the equation, and c) Solve the problem. 1) The sum of a number and its square is 42. Find.
Making Equations (2) Algebra 5 x + 7 Area = 53cm 2 The area of a rectangle. In each of the examples below, the area of the rectangle is given. Make an.
Solving Multi-Step Equations
2.2 Solving Two- Step Equations. Solving Two Steps Equations 1. Use the Addition or Subtraction Property of Equality to get the term with a variable on.
Ch 2.4 (part 2) Multi-Step Objective: To solve multi-step variable equations by using three or more properties.
2.4 – Solving Equations with the Variable on Each Side.
Example: cost of bananas at $0.19 each 0.19b Objective.
1-3 Multi-Step Equations Objectives: To solve equations with multiple steps including distributive property.
Warm Up Simplify each expression. 1.10c + c 2. 5m + 2(2m – 7) 11c 9m – 14.
Opener: Find three consecutive odd integers whose sum is -63 Integer #1 = n Integer #2 = n + 2 Integer #3 = n + 4 (n) + (n + 2) + (n + 4) = -63 3n + 6.
Opener (5 + 6) • 2 a + (b + c) + (d • e) 18k x2 + 5x + 4y + 7
3.5 Solving Equations with Variables on Both Sides.
Lesson 1-3 Solving Equations. Properties of Equality Reflexive Propertya = a Symmetric PropertyIf a = b, then b = a. Transitive PropertyIf a = b and b.
1.4 Solving Equations.
Write an expression which represents the perimeter of the rectangle?
Warm Up 1. A=lw for w v + 6 = 4v – (2x – 4) = 4x + 4
3-5 More on Solving Equations
Solving for a Specific Variable
Equations with Perimeter and Area
Warm Up 1. A=lw for w v + 6 = 4v – (2x – 4) = 4x + 4
simplify radical expressions involving addition and subtraction.
Solving Multistep Equations
SAT Prep Day 6 Solving Absolute Value Equations
Solving Multi-Step Equations
2-1 Solving 1 step equations
Friday, November 15th 2013 Objective: Agenda:
Solving Two-Step Equations
6-2 Solving Systems Using Substitution
Warm Up 1. A=lw for w v + 6 = 4v – (2x – 4) = 4x + 4
Solving Equations with the Variable on Both Sides
Use the substitution method to find all solutions of the system of equations {image} Choose the answer from the following: (10, 2) (2, 10) (5, - 2) ( -
Objective Solve equations in one variable that contain variable terms on both sides.
Ratio Ratio – a comparison of numbers A ratio can be written 3 ways:
Do Now 1) t + 3 = – 2 2) 18 – 4v = 42.
1.3 Solving Linear Equations
Solving Multiplication Equations
Objective Solve equations in one variable that contain variable terms on both sides.
Objective Solve equations in one variable that contain more than one operation.
Do Now 10/13/11 In your notebook, simplify the expressions below.
one of the equations for one of its variables Example: -x + y = 1
Adding and Subtracting Radicals
2-5 (Part I) Applying the Distributive Property
Objective 3.4 solve equations with variables on both sides.
10/3/11 In your notebook, answer completely the following:
Algebra 1 Section 2.7.
Solving Equations.
Exercise Solve and check x – 3 = 5. x = 8 8 – 3 = 5.
Algebra Review “Solving Equations”
By: Savana Bixler Solving Equations.
Presentation transcript:

In all things of nature there is something of the marvelous. 1.3 – Problem Solving In all things of nature there is something of the marvelous.

Remember when solving an algebraic equation: 1) Perform distributive property. 2) Combine like terms on each side. 3) Get all of the variables on one side of the equation. 4) Undo addition and subtraction, then multiplication and division.

Ex3) The width of a rectangle is 2 cm less than the length of the rectangle. The perimeter of the rectangle is 76 cm. Find the dimensions of the rectangle.

Ex4) Solve for w. V = lwh Ex5) Solve for g. S = ½gt2 Solving when there are multiple variables: Use the same techniques. Your answer will probably be a variable expression instead of a number. Ex4) Solve for w. V = lwh Ex5) Solve for g. S = ½gt2

Solving when there are multiple variables: More Practice…

Homework: # 1, 9, 13, 17, 20, 23-27 odd, 31-35 odd, 36-46 even 1.3 – Problem Solving Homework: # 1, 9, 13, 17, 20, 23-27 odd, 31-35 odd, 36-46 even In all things of nature there is something of the marvelous.