PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering

Slides:



Advertisements
Similar presentations
1 Outline Control structure design (plantwide control) A procedure for control structure design I Top Down Step 1: Degrees of freedom Step 2: Operational.
Advertisements

1 CONTROLLED VARIABLE AND MEASUREMENT SELECTION Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Technology (NTNU)
1 Outline Control structure design (plantwide control) A procedure for control structure design I Top Down Step 1: Degrees of freedom Step 2: Operational.
Plantwide process control with focus on selecting economic controlled variables («self- optimizing control») Sigurd Skogestad, NTNU 2014.
Practical plantwide process control Sigurd Skogestad, NTNU Thailand, April 2014.
GHGT-8 Self-Optimizing and Control Structure Design for a CO 2 Capturing Plant Mehdi Panahi, Mehdi Karimi, Sigurd Skogestad, Magne Hillestad, Hallvard.
Optimal operation of distillation columns and link to control Distillation Course Berlin Summer Sigurd Skogestad. Part 3.
1 Coordinator MPC for maximization of plant throughput Elvira Marie B. Aske* &, Stig Strand & and Sigurd Skogestad* * Department of Chemical Engineering,
1 Outline Skogestad procedure for control structure design I Top Down Step S1: Define operational objective (cost) and constraints Step S2: Identify degrees.
1 Plantwide control: Towards a systematic procedure Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU)
1 1 Economic Plantwide Control, July 2015 ECONOMIC PLANTWIDE CONTROL Sigurd Skogestad Dept. of Chemical Engineering, Norwegian University of Science and.
Outline Skogestad procedure for control structure design I Top Down
1 1 V. Minasidis et. al. | Simple Rules for Economic Plantwide ControlSimple Rules for Economic Plantwide Control, PSE & ESCAPE 2015 SIMPLE RULES FOR ECONOMIC.
1 Structure of the process control system Benefits from MPC (Model Predictive Control) and RTO (Real Time Optimization) Sigurd Skogestad Department of.
1 A Plantwide Control Procedure Applied to the HDA Process Antonio Araújo and Sigurd Skogestad Department of Chemical Engineering Norwegian University.
1 Practical plantwide process control. Extra Sigurd Skogestad, NTNU Thailand, April 2014.
1 Outline About Trondheim and myself Control structure design (plantwide control) A procedure for control structure design I Top Down Step 1: Degrees of.
1 E. S. Hori, Maximum Gain Rule Maximum Gain Rule for Selecting Controlled Variables Eduardo Shigueo Hori, Sigurd Skogestad Norwegian University of Science.
1 Active constraint regions for economically optimal operation of distillation columns Sigurd Skogestad and Magnus G. Jacobsen Department of Chemical Engineering.
Sigurd Skogestad Department of Chemical Engineering
1 A SYSTEMATIC APPROACH TO PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU) Trondheim,
1 Plantwide control: Towards a systematic procedure Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU)
1 Outline Control structure design (plantwide control) A procedure for control structure design I Top Down Step 1: Degrees of freedom Step 2: Operational.
1 Selv-optimaliserende regulering Anvendelser mot prosessindustrien, biologi og maratonløping Sigurd Skogestad Institutt for kjemisk prosessteknologi,
1 Self-optimizing control From key performance indicators to control of biological systems Sigurd Skogestad Department of Chemical Engineering Norwegian.
1 PLANTWIDE CONTROL Identifying and switching between active constraints regions Sigurd Skogestad and Magnus G. Jacobsen Department of Chemical Engineering.
1 A SYSTEMATIC APPROACH TO PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU) Trondheim,
1 II. Bottom-up Determine secondary controlled variables and structure (configuration) of control system (pairing) A good control configuration is insensitive.
1 A SYSTEMATIC APPROACH TO PLANTWIDE CONTROL ( ) Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology.
Control Structure Design: New Developments and Future Directions Vinay Kariwala and Sigurd Skogestad Department of Chemical Engineering NTNU, Trondheim,
1 Outline About Trondheim and myself Control structure design (plantwide control) A procedure for control structure design I Top Down Step 1: Degrees of.
1 Self-optimizing control From key performance indicators to control of biological systems Sigurd Skogestad Department of Chemical Engineering Norwegian.
1 Combination of Measurements as Controlled Variables for Self-optimizing Control Vidar Alstad † and Sigurd Skogestad Department of Chemical Engineering,
1 PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU) Trondheim, Norway August/September.
1 Control structure design for complete chemical plants (a systematic procedure to plantwide control) Sigurd Skogestad Department of Chemical Engineering.
1 A SYSTEMATIC APPROACH TO PLANTWIDE CONTROL ( ) Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology.
Control strategies for optimal operation of complete plants Plantwide control - With focus on selecting economic controlled variables Sigurd Skogestad,
Coordinator MPC with focus on maximizing throughput
Plantwide process control Introduction
A systematic procedure for economic plantwide control
Advanced process control with focus on selecting economic controlled variables («self-optimizing control») Sigurd Skogestad, NTNU 2016.
Plantwide process control Introduction
Feedback: The simple and best solution
Sigurd Skogestad Department of Chemical Engineering
PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering
Sigurd Skogestad Department of Chemical Engineering
Outline Control structure design (plantwide control)
Changing between Active Constraint Regions for Optimal Operation: Classical Advanced Control versus Model Predictive Control Adriana Reyes-Lúa, Cristina.
Sigurd Skogestad Department of Chemical Engineering
Example regulatory control: Distillation
PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering
Plantwide control: Towards a systematic procedure
CONTROLLED VARIABLE AND MEASUREMENT SELECTION
Outline Skogestad procedure for control structure design I Top Down
Outline Control structure design (plantwide control)
Perspectives and future directions in control structure selection
Step 2. Degree of freedom (DOF) analysis
Sigurd Skogestad Department of Chemical Engineering
Plantwide control: Towards a systematic procedure
Economic plantwide control: A systematic approach for CV-selection
Vidar Alstad† and Sigurd Skogestad Department of Chemical Engineering,
Example regulatory control: Distillation
Plantwide control: Towards a systematic procedure
Example regulatory control: Distillation
Example regulatory control: Distillation
Optimal measurement selection for controlled variables in Kaibel Distillation Column: A MIQP formulation Ramprasad Yelchuru (PhD Candidiate) Professor.
Example “stabilizing” control: Distillation
Part 3: Regulatory («stabilizing») control
Outline Control structure design (plantwide control)
Presentation transcript:

PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU) Trondheim, Norway August/September/December 2006

Summary and references We have developed a systematic procedure for plantwide control. An important part is the selection of controlled variables based on self-optimizing control. These are the controlled variables for the "supervisory" control layer. In addition, we need a regulatory control system to stabilize the plant and avoid drift. The following paper summarizes the procedure: S. Skogestad, ``Control structure design for complete chemical plants'', Computers and Chemical Engineering, 28 (1-2), 219-234 (2004). There are many approaches to plantwide control as discussed in the following review paper: T. Larsson and S. Skogestad, ``Plantwide control: A review and a new design procedure'' Modeling, Identification and Control, 21, 209-240 (2000).

Main message 1. Control for economics (Top-down steady-state arguments) Primary controlled variables c = y1 : Control active constraints For remaining unconstrained degrees of freedom: Look for “self-optimizing” variables 2. Control for stabilization (Bottom-up; regulatory PID control) Secondary controlled variables y2 (“inner cascade loops”) Control variables which otherwise may “drift” Both cases: Control variables with a large gain!

How we design a control system for a complete chemical plant? Where do we start? What should we control? and why? etc.

Main simplification: Hierarchical structure RTO Need to define objectives and identify main issues for each layer MPC PID

Objectives of layers: MV’s and CV’s RTO Min J (economics); MV=y1s cs = y1s CV=y1; MV=y2s MPC y2s PID CV=y2; MV=u u (valves)

Summary: The three layers Optimization layer (RTO; steady-state nonlinear model): Identifies active constraints and computes optimal setpoints for primary controlled variables (y1). Supervisory control (MPC; linear model with constraints): Follow setpoints for y1 (usually constant) by adjusting setpoints for secondary variables (MV=y2s) Regulatory control (PID): Stabilizes the plant and avoids drift, in addition to following setpoints for y2. MV=valves (u). Design starts from the bottom. A good example is bicycle riding: Regulatory control: First you need to learn how to stabilize the bicycle Supervisory control: Then you need to follow the road. Usually a constant setpoint policy is OK, for example, stay y1s=0.5 m from the right hand side of the road (in this case the "magic" self-optimizing variable self-optimizing variable is y1=distance to right hand side of road) Optimization: Which road (route) should you follow?

Stepwise procedure plantwide control I. TOP-DOWN Step 1. DEGREES OF FREEDOM Step 2. OPERATIONAL OBJECTIVES Step 3. WHAT TO CONTROL? (primary CV’s c=y1) Step 4. PRODUCTION RATE II. BOTTOM-UP (structure control system): Step 5. REGULATORY CONTROL LAYER (PID) “Stabilization” What more to control? (secondary CV’s y2) Step 6. SUPERVISORY CONTROL LAYER (MPC) Decentralization Step 7. OPTIMIZATION LAYER (RTO) Can we do without it?

Optimal operation (economics) What are we going to use our degrees of freedom for? Define scalar cost function J(u0,x,d) u0: degrees of freedom d: disturbances x: states (internal variables) Typical cost function: Optimal operation for given d: minuss J(uss,x,d) subject to: Model equations: f(uss,x,d) = 0 Operational constraints: g(uss,x,d) < 0 J = cost feed + cost energy – value products

Optimal operation distillation column Distillation at steady state with given p and F: N=2 DOFs, e.g. L and V Cost to be minimized (economics) J = - P where P= pD D + pB B – pF F – pV V Constraints Purity D: For example xD, impurity · max Purity B: For example, xB, impurity · max Flow constraints: min · D, B, L etc. · max Column capacity (flooding): V · Vmax, etc. Pressure: 1) p given, 2) p free: pmin · p · pmax Feed: 1) F given 2) F free: F · Fmax Optimal operation: Minimize J with respect to steady-state DOFs cost energy (heating+ cooling) value products cost feed

Optimal operation minimize J = cost feed + cost energy – value products Two main cases (modes) depending on marked conditions: Given feed Amount of products is then usually indirectly given and J = cost energy. Optimal operation is then usually unconstrained: Feed free Products usually much more valuable than feed + energy costs small. Optimal operation is then usually constrained: “maximize efficiency (energy)” Control: Operate at optimal trade-off (not obvious how to do and what to control) “maximize production” Control: Operate at bottleneck (“obvious”)

Step 3: What c’s should we control? Optimal solution is usually at constraints, that is, most of the degrees of freedom are used to satisfy “active constraints”, g(u,d) = 0 CONTROL ACTIVE CONSTRAINTS! cs = value of active constraint Implementation of active constraints is usually simple. WHAT MORE SHOULD WE CONTROL? Find “self-optimizing” variables c for remaining unconstrained degrees of freedom u.

What should we control? – Sprinter Optimal operation of Sprinter (100 m), J=T One input: ”power/speed” Active constraint control: Maximum speed (”no thinking required”)

What should we control? – Marathon Optimal operation of Marathon runner, J=T No active constraints Any self-optimizing variable c (to control at constant setpoint)?

Self-optimizing Control – Marathon Optimal operation of Marathon runner, J=T Any self-optimizing variable c (to control at constant setpoint)? c1 = distance to leader of race c2 = speed c3 = heart rate c4 = level of lactate in muscles

Self-optimizing Control Self-optimizing control is when acceptable operation can be achieved using constant set points (cs) for the controlled variables c (without the need to re-optimizing when disturbances occur). c=cs

Step 4. Where set production rate? Very important! Determines structure of remaining inventory (level) control system Set production rate at (dynamic) bottleneck Link between Top-down and Bottom-up parts

Production rate set at inlet : Inventory control in direction of flow

Production rate set at outlet: Inventory control opposite flow

Production rate set inside process

Where set the production rate? Very important decision that determines the structure of the rest of the control system! May also have important economic implications

Often optimal: Set production rate at bottleneck! “A unit is a bottleneck if maximum throughput is obtained by operating this unit at maximum flow If feed is cheap and available: Optimal with maximum throughput If the flow for some time is not at its maximum through the bottleneck, then this loss can never be recovered. To reduce “back-off”: Optimal to set throughput (production rate) at bottleneck Throughput manipulator = Bottleneck flow

Outline Control structure design (plantwide control) A procedure for control structure design I Top Down Step 1: Degrees of freedom Step 2: Operational objectives (optimal operation) Step 3: What to control ? (self-optimizing control) Step 4: Where set production rate? II Bottom Up Step 5: Regulatory control: What more to control ? Step 6: Supervisory control Step 7: Real-time optimization Case studies

Step 5. Regulatory control layer Purpose: “Stabilize” the plant using local SISO PID controllers Enable manual operation (by operators) Main structural issues: What more should we control? (secondary cv’s, y2) Pairing with manipulated variables (mv’s u2) y1 = c y2 = ?

Objectives regulatory control layer Allow for manual operation Simple decentralized (local) PID controllers that can be tuned on-line Take care of “fast” control Track setpoint changes from the layer above Local disturbance rejection Stabilization (mathematical sense) Avoid “drift” (due to disturbances) so system stays in “linear region” “stabilization” (practical sense) Allow for “slow” control in layer above (supervisory control) Make control problem easy as seen from layer above Implications for selection of y2: Control of y2 “stabilizes the plant” y2 is easy to control (favorable dynamics)

Cascade control distillation ys y Ts T Ls L z With flow loop + T-loop in top y XC Ts T TC Ls L FC z XC

Step 6. Supervisory control layer Purpose: Keep primary controlled outputs c=y1 at optimal setpoints cs Degrees of freedom: Setpoints y2s in reg.control layer Main structural issue: Decentralized or multivariable?

Step 7. Optimization layer (RTO) Purpose: Identify active constraints and compute optimal setpoints (to be implemented by supervisory control layer) Main structural issue: Do we need RTO? (or is process self-optimizing) RTO not needed when Can “easily” identify change in active constraints (operating region) For each operating region there exists self-optimizing var

Summary: Main steps What should we control (y1=c=z)? Must define optimal operation! Where should we set the production rate? At bottleneck What more should we control (y2)? Variables that “stabilize” the plant Control of primary variables Decentralized? Multivariable (MPC)?

References http://www.nt.ntnu.no/users/skoge/ Halvorsen, I.J, Skogestad, S., Morud, J.C., Alstad, V. (2003), “Optimal selection of controlled variables”, Ind.Eng.Chem.Res., 42, 3273-3284. Larsson, T. and S. Skogestad (2000), “Plantwide control: A review and a new design procedure”, Modeling, Identification and Control, 21, 209-240. Larsson, T., K. Hestetun, E. Hovland and S. Skogestad (2001), “Self-optimizing control of a large-scale plant: The Tennessee Eastman process’’, Ind.Eng.Chem.Res., 40, 4889-4901. Larsson, T., M.S. Govatsmark, S. Skogestad and C.C. Yu (2003), “Control of reactor, separator and recycle process’’, Ind.Eng.Chem.Res., 42, 1225-1234 Skogestad, S. and Postlethwaite, I. (1996, 2005), Multivariable feedback control, Wiley Skogestad, S. (2000). “Plantwide control: The search for the self-optimizing control structure”. J. Proc. Control 10, 487-507. Skogestad, S. (2003), ”Simple analytic rules for model reduction and PID controller tuning”, J. Proc. Control, 13, 291-309. Skogestad, S. (2004), “Control structure design for complete chemical plants”, Computers and Chemical Engineering, 28, 219-234. (Special issue from ESCAPE’12 Symposium, Haag, May 2002). … + more….. See home page of S. Skogestad: http://www.nt.ntnu.no/users/skoge/