Journée Présentation de lANR In conjunction with Perpi2006 RenPar'17 / SympA'2006 / CFSE'5 / JC'2006 3 octobre 2006.

Slides:



Advertisements
Similar presentations
Institute of Computer Science AGH Towards Multilanguage and Multiprotocol Interoperability: Experiments with Babel and RMIX Maciej Malawski, Daniel Harężlak,
Advertisements

MicroKernel Pattern Presented by Sahibzada Sami ud din Kashif Khurshid.
UNIVERSITY OF JYVÄSKYLÄ P2PDisCo – Java Distributed Computing for Workstations Using Chedar Peer-to-Peer Middleware Presentation for 7 th International.
Elton Mathias and Jean Michael Legait 1 Elton Mathias, Jean Michael Legait, Denis Caromel, et al. OASIS Team INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis,
A Workflow Engine with Multi-Level Parallelism Supports Qifeng Huang and Yan Huang School of Computer Science Cardiff University
A PPARC funded project AstroGrid Framework Consortium meeting, Dec 14-15, 2004 Edinburgh Tony Linde Programme Manager.
Universitá degli Studi di LAquila Mälardalens Högskola, Västerås 10th September 2009 Integrating Wireless Systems into Process Industry and Business Management.
Deployment of DIET and JuxMem using JDF: ongoing work Mathieu Jan Projet PARIS Rennes, 4 May 2004.
All-in-one graphical tool for grid middleware management Eddy Caron, Abdelkader Amar, Frédéric Desprez, David Loureiro LIP ENS Lyon, INRIA Rhône-Alpes,
Workflow management within DIET Raphaël Bolze LIP ENS Lyon, CNRS INRIA Rhône-Alpes, GRAAL project
DIET Overview and some recent work A middleware for the large scale deployment of applications over the Grid Frédéric Desprez LIP ENS Lyon / INRIA GRAAL.
INTRODUCTION TO SIMULATION WITH OMNET++ José Daniel García Sánchez ARCOS Group – University Carlos III of Madrid.
Distributed Processing, Client/Server and Clusters
Database System Concepts and Architecture
Global Analysis and Distributed Systems Software Architecture Lecture # 5-6.
Providing Fault-tolerance for Parallel Programs on Grid (FT-MPICH) Heon Y. Yeom Distributed Computing Systems Lab. Seoul National University.
Jaringan Informasi Pengantar Sistem Terdistribusi oleh Ir. Risanuri Hidayat, M.Sc.
GridRPC Sources / Credits: IRISA/IFSIC IRISA/INRIA Thierry Priol et. al papers.
A Nation Wide Experimental Grid The Grid’5000 project: architecture and objectives Building a nation wide experimental platform for Grid researchers –
CS490T Advanced Tablet Platform Applications Network Programming Evolution.
Simulation concepts and architectures. Simulation Basics System: a collecting of entities that act and interact together toward the accomplishment of.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 17 Client-Server Processing, Parallel Database Processing,
.NET Mobile Application Development Introduction to Mobile and Distributed Applications.
Architecture overview 6/03/12 F. Desprez - ISC Cloud Context : Development of a toolbox for deploying application services providers with a hierarchical.
Client-Server Processing and Distributed Databases
Eddy Caron Join work with Jonathan Rouzaud-Cornabas, Frédéric Desprez, Rajesh Palanichamy and the DIET Team Ecole Normale Supérieure de Lyon AVALON Research.
SSI-OSCAR A Single System Image for OSCAR Clusters Geoffroy Vallée INRIA – PARIS project team COSET-1 June 26th, 2004.
Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved DISTRIBUTED.
JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid Gabriel Antoniu, Luc Bougé, Mathieu Jan IRISA / INRIA & ENS Cachan, France Workshop.
LEGO – Rennes, 3 Juillet 2007 Deploying Gfarm and JXTA-based applications using the ADAGE deployment tool Landry Breuil, Loïc Cudennec and Christian Perez.
Deploying DIET and JuxMem: GoDIET + JDF Mathieu Jan PARIS Research Group IRISA INRIA & ENS Cachan / Brittany Extension Rennes Lyon, July 2004.
Active Monitoring in GRID environments using Mobile Agent technology Orazio Tomarchio Andrea Calvagna Dipartimento di Ingegneria Informatica e delle Telecomunicazioni.
1 CCA Meeting, Januray 25th 2007 Supporting the Master-Worker Paradigm in the Common Component Architecture Hinde Lilia Bouziane, Christian Pérez, Thierry.
Hinde Bouziane – CBHPC’08 – October 2008 Marco ALDINUCCI and Marco DANELUTTO UNIPI - University of Pisa (Italy) Hinde Lilia BOUZIANE and Christian.
Large-scale Deployment in P2P Experiments Using the JXTA Distributed Framework Gabriel Antoniu, Luc Bougé, Mathieu Jan & Sébastien Monnet PARIS Research.
Jean-Sébastien Gay LIP ENS Lyon, Université Claude Bernard Lyon 1 INRIA Rhône-Alpes GRAAL Research Team Join work with DIET TEAM D istributed I nteractive.
Peer-to-Peer Distributed Shared Memory? Gabriel Antoniu, Luc Bougé, Mathieu Jan IRISA / INRIA & ENS Cachan/Bretagne France Dagstuhl seminar, October 2003.
Master Worker Paradigm Support in Software Component Models Hinde Bouziane, Christian Pérez PARIS Research Team INRIA/IRISA Rennes ANR CIGC LEGO (ANR-05-CICG-11)
Programming Parallel and Distributed Systems for Large Scale Numerical Simulation Application Christian Perez INRIA researcher IRISA Rennes, France.
Heavy and lightweight dynamic network services: challenges and experiments for designing intelligent solutions in evolvable next generation networks Laurent.
“DECISION” PROJECT “DECISION” PROJECT INTEGRATION PLATFORM CORBA PROTOTYPE CAST J. BLACHON & NGUYEN G.T. INRIA Rhône-Alpes June 10th, 1999.
Issues in (Financial) High Performance Computing John Darlington Director Imperial College Internet Centre Fast Financial Algorithms and Computing 4th.
JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid Gabriel Antoniu, Luc Bougé, Mathieu Jan IRISA / INRIA & ENS Cachan, France Grid Data.
1 Andreea Chis under the guidance of Frédéric Desprez and Eddy Caron Scheduling for a Climate Forecast Application ANR-05-CIGC-11.
Building Hierarchical Grid Storage Using the GFarm Global File System and the JuxMem Grid Data-Sharing Service Gabriel Antoniu, Lo ï c Cudennec, Majd Ghareeb.
The JuxMem-Gfarm Collaboration Enhancing the JuxMem Grid Data Sharing Service with Persistent Storage Using the Gfarm Global File System Gabriel Antoniu,
Laboratoire LIP6 The Gedeon Project: Data, Metadata and Databases Yves DENNEULIN LIG laboratory, Grenoble ACI MD.
Towards high-performance communication layers for JXTA on grids Mathieu Jan GDS meeting, Lyon, 17 February 2006.
Hwajung Lee.  Interprocess Communication (IPC) is at the heart of distributed computing.  Processes and Threads  Process is the execution of a program.
CORBA1 Distributed Software Systems Any software system can be physically distributed By distributed coupling we get the following:  Improved performance.
WP1 : Applications Océan / atmosphère Cosmologie Site d'expertise algèbre linéaire creuse TLSE.
DISCOGRID Sophia, mars 2006 The Padico Environment Christian Pérez PARIS Research Team, IRISA/INRIA, Rennes, France.
Dispatching Java agents to user for data extraction from third party web sites Alex Roque F.I.U. HPDRC.
1 VLDB - Data Management in Grids B. Del-Fabbro, D. Laiymani, J.M. Nicod and L. Philippe Laboratoire d’Informatique de l’Université de Franche-Comté Séoul,
1 OASIS Team, INRIA Sophia-Antipolis/I3S CNRS, Univ. Nice Christian Delbé Data Grid Explorer 15/09/03 Large Scale Emulation Mobility in ProActive.
GRID ANATOMY Advanced Computing Concepts – Dr. Emmanuel Pilli.
ANR CIGC LEGO (ANR-CICG-05-11) Bordeaux, 2006, December 11 th Automatic Application Deployment on Grids Landry Breuil, Boris Daix, Sébastien Lacour, Christian.
Tool Integration with Data and Computation Grid “Grid Wizard 2”
Pour Michel Hello, Tu peux trouver dans ce ppt 3 parties, je te laisse te servir. - L’outil réalisé par GRAAL et pour la communauté de Grid’5000: GRUDU.
Advanced Component Models ULCM & HLCM Julien Bigot, Hinde Bouziane, Christian Perez COOP Project Lyon, 9-10 mars 2010.
GridRPC Sources / Credits: IRISA/IFSIC IRISA/INRIA Thierry Priol et. al papers.
March 2004 At A Glance The AutoFDS provides a web- based interface to acquire, generate, and distribute products, using the GMSEC Reference Architecture.
+ Support multiple virtual environment for Grid computing Dr. Lizhe Wang.
Towards a High Performance Extensible Grid Architecture Klaus Krauter Muthucumaru Maheswaran {krauter,
Grid Institute Scientific Council, September 10, 2008
- Eddy Caron.
Distributed Systems Bina Ramamurthy 11/30/2018 B.Ramamurthy.
Distributed Systems Bina Ramamurthy 12/2/2018 B.Ramamurthy.
L. Glimcher, R. Jin, G. Agrawal Presented by: Leo Glimcher
Presentation transcript:

Journée Présentation de lANR In conjunction with Perpi2006 RenPar'17 / SympA'2006 / CFSE'5 / JC' octobre 2006

2 Teams LIP/INRIA: Projet GRAAL Anne Benoît Raphaël Bolze Yves Caniou Eddy Caron Pushpinder Kaur Chouhan Frédéric Desprez Jean-Sébastien Gay Cédric Tedeschi IRISA/INRIA: Projet PARIS Gabriel Antoniu Luc Bougé Hinde Bouziane Loïc Cudennec Mathieu Jan Sébastien Monnet Christian Perez Thierry Priol LaBRI/INRIA: Projet RUNTIME Olivier Aumage Alexandre Denis ENSEEIHT: IRIT Michel Daydé Marc Pantel Daniel Hagimont CERFACS Eric Maisonnave ENS-Lyon: CRAL Hélène Courtois Julien Devriendt Romain Teyssier

3 Middleware Components Deployment Communications Data management Scheduling The Concept Workflow

4 Components Advanced Component Model Components and data-sharing service Composition based on data-access Data port Use of JuxMem Components and master-worker paradigm Collection + request scheduling Use of Diet Components and workflow Whats mean dependency for the component model? Components and legacy code No code re-writing Mechanism to deal between application and scheduler B A Data data_ref worker master

5 DIET Architecture LA MA LA Server front end Master Agent Local Agent Client MA CORBA or JXTA Middleware

6 Peer Firewall Peer TCP/IP HTTP Peer ID Firewall Toolbox for the development of P2P applications Set of protocols One peer Unique ID Several communication protocols (TCP, HTTP, …) JuxMem: a Grid Data-Sharing Service A peer-to-peer architecture for a data-sharing service in memory Persistence and data coherency mechanism Transparent data localization Data management

7 Communication Brick Communication for multi-paradigm programming model Message passing Remote procedure calls Distributed/Shared memory Cluster view: High-speed network Hardware heterogeneity Myrinet, Quadrics, Infiniband, SCI Gigabit Ethernet Software heterogeneity GM, MX Elan, Elan4 Sisci Sockets Contribution Madeleine library Communications Network Programming environments Generic communication support Message passing Service invocation (RPC, RMI) Madeleine Application processes EthernetMyrinetSCIQuadrics… Distributed shared memory

8 Communications Grid Communication: PadicoTM Grid communications between site Wide communications Specific communications Connectivity: firewalls, none-routed network, etc. Performance: High latency, low bandwidth Security: protection, accounting Middleware and applications integration Middleware upgrading for Madeleine? Existing code? Contribution A high-performance communication framework for Grids: PadicoTM PARIS project ( ) and RUNTIME (since 2004)

9 Scheduling Brick: into DIET Plug-in Scheduler Existing plug-in scheduling facilities Application-specific definition of appropriate performance metrics An extensible measurement system Tuneable comparison/aggregation routines for scheduling Composite requirements enables various selection methods basic resource availability processor speed, memory database contention future requests CORI Collector: an easy interface to gathering performance and load information for a specific SeD Two modules (currently): CoRI-Easy and FAST Possible to extend (new modules): Ganglia, Nagios, R-GMA, Hawkeye, INCA, MDS, … Scheduling

10 Scheduling Brick: Workflow Workflow management using component model Workflow and DIET Simple and high level API for the client Workflow description based on XML Use of different scheduling algorithms (RR, HEFT, etc.) Ability for the client to use its own workflow scheduler Automatic rescheduling mechanisms Support multi-workflows scheduling DIET hierarchy extended with a special agent: MA DAG Two execution modes of the MA DAG Complete scheduling provided : task priorities and resources mapping Partial scheduling provided : only task priorities Workflow Exemple from Cosmological Application

11 Deployment Brick: ADAGE Automatic deployment tool for grid environment Only one command to deploy 3 kinds of input information Resource description application description control parameter Planning model (random, round-robin), … Plug-in for each application Description convector Configuration of application CCM, MPICH-P4, MPICH-G2, JXTA Plug-in: from 400 to 1200 C++ lines Deployment

12 Ocean-atmosphere Numerical Simulations Energy transport: Equator Pole World climate behavior Platform Supercomputer approach large simulation (1000 years) Grid approach parameterization design independent and simultaneous simulations Code coupling ARPEGE v4.5 (atmospheric modelisation) OPA v9 +LIM (ocean modelisation) OASIS v3 (code coupling) Application

13 Cosmological Simulation RAMSES Computes the evolution of dark matter particles starting from the early universe's structure GALICS Performs structure detection (halos of dark matter) Builds the evolution tree of the particles Generates galaxies Application Simulation 1st part, 1 submission from the client: generating low resolution IC RAMSES post-processing with GALICS, results are sent back to the user 2nd part, n submissions from the client: generating high resolution IC centered on the wanted part of the universe RAMSES post-processing with GALICS, results are sent back to the user

14 Application Sparse Direct Solvers Sparse direct solvers in a client-server environment (DIET) Provide remote access to the algorithms we develop (e.g. MUMPS) Easy to use from a light client Data persistency on the servers is crucial Application: an expertise site for sparse linear algebra: ACI GRID TLSE (coordinated by ENSEEIHT-IRIT, Toulouse) On a users specific problem, compare execution time / accuracy / memory usage / … of various solvers: public domain … as well as commercial, sequential … as well as parallel Find best parameter values / reordering heuristics on a given problem Also bibliography, matrix collections, … All elementary requests executed on the/a GRID through DIET Must be highly evolving (new solvers with new parameters, new scenarii)

15 Conclusion Programming model brick Component model Grid middleware brick GridRPC environment: DIET. Data management brick Data-sharing system: JuxMeM Communication bricks Intra-cluster: Madeleine Grid communication: PadicoTM Scheduling brick DIETs Plug-in scheduler Workflow bricks DIETs DAG management Component management Deployment brick ADAGE Applications brick Ocean-atmosphere Numerical Simulations Cosmological Simulation Sparse Direct Solvers

Questions?

17 Workpackages WP1: Applications Responsable: CRAL Équipes impliquées : toutes WP2: Modèles de programmation Responsable: PARIS Équipes impliquées: PARIS, GRAAL, IRIT-TLSE WP3: Étude et modélisation de lordonnancement et du déploiement des applications Responsable: GRAAL Équipes impliquées: PARIS, GRAAL, RUNTIME WP4: Étude et modélisation des communications Responsable: RUNTIME Équipes impliquées: RUNTIME, PARIS, GRAAL WP5: Validation à grande échelle sur la plate-forme expérimentale Grid5000 Responsable: IRIT-TLSE Équipes impliquées: toutes