Jakubs Kubiak, Jonathan Brewer, Søren Hansen, Luis A. Bagatolli 

Slides:



Advertisements
Similar presentations
Volume 111, Issue 7, Pages (October 2016)
Advertisements

Ewa K. Krasnowska, Enrico Gratton, Tiziana Parasassi 
Volume 111, Issue 7, Pages (October 2016)
Volume 103, Issue 5, Pages (September 2012)
Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy 
Volume 107, Issue 4, Pages (August 2014)
Anionic Lipids Modulate the Activity of the Aquaglyceroporin GlpF
Scott D. Shoemaker, T. Kyle Vanderlick  Biophysical Journal 
Michael J. Knight, Serena Dillon, Lina Jarutyte, Risto A. Kauppinen 
Fast Label-Free Cytoskeletal Network Imaging in Living Mammalian Cells
Volume 96, Issue 11, Pages (June 2009)
Physical Properties of Escherichia coli Spheroplast Membranes
Volume 112, Issue 7, Pages (April 2017)
Juan M. Vanegas, Maria F. Contreras, Roland Faller, Marjorie L. Longo 
David W. Allender, M. Schick  Biophysical Journal 
Reversible Liposome Association Induced by LAH4: A Peptide with Potent Antimicrobial and Nucleic Acid Transfection Activities  Arnaud Marquette, Bernard.
Marc Jendrny, Thijs J. Aartsma, Jürgen Köhler  Biophysical Journal 
Volume 87, Issue 1, Pages (July 2004)
Volume 107, Issue 12, Pages (December 2014)
Volume 113, Issue 6, Pages (September 2017)
Spatially Resolved Two-Color Diffusion Measurements in Human Skin Applied to Transdermal Liposome Penetration  Jonathan Brewer, Maria Bloksgaard, Jakub.
Agata Witkowska, Reinhard Jahn  Biophysical Journal 
Masataka Chiba, Makito Miyazaki, Shin’ichi Ishiwata 
H.M. Seeger, G. Marino, A. Alessandrini, P. Facci  Biophysical Journal 
Modulating Vesicle Adhesion by Electric Fields
Volume 107, Issue 6, Pages (September 2014)
Benjamin L. Stottrup, Sarah L. Keller  Biophysical Journal 
Volume 113, Issue 11, Pages (December 2017)
Volume 109, Issue 5, Pages (September 2015)
Aymeric Chorlay, Abdou Rachid Thiam  Biophysical Journal 
Giant Unilamellar Vesicles Formed by Hybrid Films of Agarose and Lipids Display Altered Mechanical Properties  Rafael B. Lira, Rumiana Dimova, Karin A.
Volume 88, Issue 1, Pages (January 2005)
Gel-Assisted Formation of Giant Unilamellar Vesicles
Structure of Supported Bilayers Composed of Lipopolysaccharides and Bacterial Phospholipids: Raft Formation and Implications for Bacterial Resistance 
Volume 93, Issue 2, Pages (July 2007)
Yuno Lee, Philip A. Pincus, Changbong Hyeon  Biophysical Journal 
Senthil Arumugam, Eugene P. Petrov, Petra Schwille  Biophysical Journal 
Volume 105, Issue 6, Pages (September 2013)
Volume 98, Issue 9, Pages (May 2010)
Direct Visualization of Lipid Domains in Human Skin Stratum Corneum's Lipid Membranes: Effect of pH and Temperature  I. Plasencia, L. Norlén, L.A. Bagatolli 
T.M. Okonogi, H.M. McConnell  Biophysical Journal 
V.P. Ivanova, I.M. Makarov, T.E. Schäffer, T. Heimburg 
Giant Unilamellar Vesicles Electroformed from Native Membranes and Organic Lipid Mixtures under Physiological Conditions  L.-Ruth Montes, Alicia Alonso,
Volume 105, Issue 9, Pages (November 2013)
Jonathan P. Litz, Niket Thakkar, Thomas Portet, Sarah L. Keller 
Obstructed Diffusion in Phase-Separated Supported Lipid Bilayers: A Combined Atomic Force Microscopy and Fluorescence Recovery after Photobleaching Approach 
Volume 96, Issue 11, Pages (June 2009)
Drift and Behavior of E. coli Cells
Volume 111, Issue 12, Pages (December 2016)
Volume 106, Issue 11, Pages (June 2014)
Erik Hellstrand, Emma Sparr, Sara Linse  Biophysical Journal 
Volume 88, Issue 2, Pages (February 2005)
Lipid Raft Composition Modulates Sphingomyelinase Activity and Ceramide-Induced Membrane Physical Alterations  Liana C. Silva, Anthony H. Futerman, Manuel.
Desmosterol May Replace Cholesterol in Lipid Membranes
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Acyl Chain Length and Saturation Modulate Interleaflet Coupling in Asymmetric Bilayers: Effects on Dynamics and Structural Order  Salvatore Chiantia,
On the Role of Acylation of Transmembrane Proteins
Jesús Sot, Luis A. Bagatolli, Félix M. Goñi, Alicia Alonso 
Volume 103, Issue 11, Pages (December 2012)
Volume 106, Issue 11, Pages (June 2014)
Volume 95, Issue 10, Pages (November 2008)
Small-Angle X-Ray Scattering of the Cholesterol Incorporation into Human ApoA1- POPC Discoidal Particles  Søren Roi Midtgaard, Martin Cramer Pedersen,
Volume 112, Issue 7, Pages (April 2017)
Itay Budin, Noam Prywes, Na Zhang, Jack W. Szostak  Biophysical Journal 
Volume 108, Issue 4, Pages (February 2015)
Geert van den Bogaart, Jacek T. Mika, Victor Krasnikov, Bert Poolman 
William J. Galush, Jeffrey A. Nye, Jay T. Groves  Biophysical Journal 
Gap Junction Coupling and Calcium Waves in the Pancreatic Islet
Volume 90, Issue 4, Pages (February 2006)
Aymeric Chorlay, Abdou Rachid Thiam  Biophysical Journal 
Presentation transcript:

Lipid Lateral Organization on Giant Unilamellar Vesicles Containing Lipopolysaccharides  Jakubs Kubiak, Jonathan Brewer, Søren Hansen, Luis A. Bagatolli  Biophysical Journal  Volume 100, Issue 4, Pages 978-986 (February 2011) DOI: 10.1016/j.bpj.2011.01.012 Copyright © 2011 Biophysical Society Terms and Conditions

Figure 1 Molecular structure of LPS-Re of E. coli (left). Schematic representation of the different LPSs used in this work (right). Gal, galactopyranose; Glc, glucopyranose; GlcN, 2-amino-2-deoxyglucopyranose; Hep, L-glycero-α-D-manno-heptopyranose; Kdo, 3-deoxy-α-D-manno-oct-2-ulopyranosonic acid; P, phosphate. For more details, see Caroff and Karibian (2). Biophysical Journal 2011 100, 978-986DOI: (10.1016/j.bpj.2011.01.012) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 2 Summary of the LPS incorporation procedure for four studied LPS strains. The x axis represents the starting LPS concentration as a fraction of the total amount of lipids in the sample. The y axis shows the concentration of LPS in the oligolamellar vesicles as a fraction of the total amount of lipids in the samples after completion of the purification procedure. The solid black line indicates an ideal 100% incorporation efficiency. These vesicles were used to form GUVs. The efficiency of LPS incorporation increases as the length of the polysaccharide decreases. Error bars are standard deviations. Biophysical Journal 2011 100, 978-986DOI: (10.1016/j.bpj.2011.01.012) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 3 Representative images of GUVs (false color representation) composed of E. coli polar lipid extract and LPSs: (A) LPS-smooth, (B) LPS-Ra, (C) LPS-Rc (above 10 mol %), (D) LPS-Rd (above 10 mol %), and (E) lipid A (above 5 mol %). The upper row shows fluorescence images (false color representation) of GUVs labeled with rhodamine-DHPE. The bottom row displays Laurdan GP images of the GUVs. For LPS-smooth (A) and LPS-Ra (B), no visible phase separation can be seen in the GUVs at any of the explored concentrations (up to 15 mol %). For deep rough LPS strains (Rc (C) and Rd (D)), the coexistence of domains of high GP values (close to 0.6 indicating presence of a gel-like structure) is observed above 10 mol %. Scale bars are 10 μm. Biophysical Journal 2011 100, 978-986DOI: (10.1016/j.bpj.2011.01.012) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 4 Laurdan GP values of LPSs containing membranes as a function of LPS concentration: (A) LPS-smooth, (B) LPS-Ra, (C) LPS-Rc, (D) LPS-Rd, and (E) lipid A. (○ and ●) Laurdan GP values calculated from GUVs. Double points at high LPS concentration for C–E represent visible phase separation GUVs. These Laurdan GP values were calculated separately for each domain, liquid-like (○) and gel-like (●). Each point represents an average of 15–25 separate vesicles; error bars are standard deviations. (Δ) Laurdan GP values from the oligolamellar vesicles used to form GUVs (measured in a fluorometer in the concentration range where domains are not observed in the GUVs). Biophysical Journal 2011 100, 978-986DOI: (10.1016/j.bpj.2011.01.012) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 5 FCS experiments performed in GUVs containing LPS-smooth and LPS-Ra, respectively, doped with fluorescently labeled Alexa 488 LPS-smooth (0.001 mol % with respect to total lipids). The figure shows the corresponding LPS diffusion coefficient measured in GUVs (each point is an average of 15–20 separate vesicles; error bars are standard deviations). No microscopic phase separation was seen in these samples with either Laurdan GP or rhodamine-DHPE. Biophysical Journal 2011 100, 978-986DOI: (10.1016/j.bpj.2011.01.012) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 6 Sketch representing the different LPS-rich domain sizes observed in our experiments. LPS chemotypes (A: LPS-smooth and LPS-Ra; B: Rc and Rd2 (deep rough chemotypes of LPS)) are inserted into the lipid membrane (PE and PG, cardiolipin not shown). (A) The lateral organization of LPS-smooth (valid also for LPS-Ra) is represented for a low concentration of this lipid (the LPS domains in the sketch correspond to a diffusion twofold lower than that of the single LPS and are nanoscopic; see section 3 of the Supporting Material). (B) Formation of large membrane platforms (micrometer-sized) for the rough LPS chemotypes above 10 mol % LPS concentration. Biophysical Journal 2011 100, 978-986DOI: (10.1016/j.bpj.2011.01.012) Copyright © 2011 Biophysical Society Terms and Conditions