Volume 107, Issue 10, Pages (November 2014)

Slides:



Advertisements
Similar presentations
How Do Thermophilic Proteins and Proteomes Withstand High Temperature? Lucas Sawle, Kingshuk Ghosh Biophysical Journal Volume 101, Issue 1, Pages
Advertisements

Calibration of Optical Tweezers for In Vivo Force Measurements: How do Different Approaches Compare? Yonggun Jun, Suvranta K. Tripathy, Babu R.J. Narayanareddy,
Tryptophan-Lipid Interactions in Membrane Protein Folding Probed by Ultraviolet Resonance Raman and Fluorescence Spectroscopy Katheryn M. Sanchez, Guipeun.
Nonresonant Confocal Raman Imaging of DNA and Protein Distribution in Apoptotic Cells N. Uzunbajakava, A. Lenferink, Y. Kraan, E. Volokhina, G. Vrensen,
Actin Protofilament Orientation at the Erythrocyte Membrane
P.J. Caspers, G.W. Lucassen, G.J. Puppels  Biophysical Journal 
Raman Spectroscopy Detection of Phytic Acid in Plant Seeds Reveals the Absence of Inorganic Polyphosphate  Bernadett Kolozsvari, Steven Firth, Adolfo.
Volume 84, Issue 6, Pages (June 2003)
Water and Backbone Dynamics in a Hydrated Protein
Volume 97, Issue 5, Pages (September 2009)
A Comparative Study of DNA Complexation with Mg(II) and Ca(II) in Aqueous Solution: Major and Minor Grooves Bindings  R. Ahmad, H. Arakawa, H.A. Tajmir-Riahi 
Surface Characterization of Insulin Protofilaments and Fibril Polymorphs Using Tip- Enhanced Raman Spectroscopy (TERS)  Dmitry Kurouski, Tanja Deckert-Gaudig,
Surface-Sensitive Raman Spectroscopy of Collagen I Fibrils
Time-Resolved FTIR Difference Spectroscopy in Combination with Specific Isotope Labeling for the Study of A1, the Secondary Electron Acceptor in Photosystem.
Verena Hoerr, Armin Purea, Cornelius Faber  Biophysical Journal 
Volume 104, Issue 1, Pages (January 2013)
Physical Properties of Escherichia coli Spheroplast Membranes
Sapun H. Parekh, Young Jong Lee, Khaled A. Aamer, Marcus T. Cicerone 
Volume 96, Issue 12, Pages (June 2009)
Shear-Induced Unfolding of Lysozyme Monitored In Situ
Vibrational Microspectroscopy and Imaging of Molecular Composition and Structure During Human Corneocyte Maturation  Guojin Zhang, David J. Moore, Richard.
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Joseph M. Johnson, William J. Betz  Biophysical Journal 
Volume 104, Issue 1, Pages (January 2013)
Volume 96, Issue 1, Pages (January 2009)
Rubén Díaz-Avalos, Donald L.D. Caspar  Biophysical Journal 
Volume 98, Issue 8, Pages (April 2010)
Volume 98, Issue 11, Pages (June 2010)
A Second Look at Mini-Protein Stability: Analysis of FSD-1 Using Circular Dichroism, Differential Scanning Calorimetry, and Simulations  Jianwen A. Feng,
Volume 105, Issue 2, Pages (July 2013)
Structural and Molecular Hair Abnormalities in Trichothiodystrophy
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Arterial Extracellular Matrix: A Mechanobiological Study of the Contributions and Interactions of Elastin and Collagen  Ming-Jay Chow, Raphaël Turcotte,
Cell Optical Density and Molecular Composition Revealed by Simultaneous Multimodal Label-Free Imaging  Nicolas Pavillon, Alison J. Hobro, Nicholas I.
Volume 90, Issue 2, Pages (January 2006)
Volume 101, Issue 4, Pages (August 2011)
Volume 103, Issue 10, Pages (November 2012)
Volume 107, Issue 10, Pages (November 2014)
Spatial Distribution of the State of Water in Frozen Mammalian Cells
Volume 93, Issue 12, Pages (December 2007)
Volume 101, Issue 11, Pages (December 2011)
Volume 108, Issue 1, Pages 5-9 (January 2015)
Volume 89, Issue 2, Pages (August 2005)
Volume 96, Issue 5, Pages (March 2009)
Volume 103, Issue 5, Pages (September 2012)
Volume 100, Issue 11, Pages (June 2011)
Quantitative Label-Free Imaging of Lipid Composition and Packing of Individual Cellular Lipid Droplets Using Multiplex CARS Microscopy  Hilde A. Rinia,
Volume 114, Issue 6, Pages (March 2018)
Topography and Mechanical Properties of Single Molecules of Type I Collagen Using Atomic Force Microscopy  Laurent Bozec, Michael Horton  Biophysical.
Protein in Sugar Films and in Glycerol/Water as Examined by Infrared Spectroscopy and by the Fluorescence and Phosphorescence of Tryptophan  Wayne W.
P. Müller-Buschbaum, R. Gebhardt, S.V. Roth, E. Metwalli, W. Doster 
Robert Rissmann, Hendrik W. W. Groenink, Gert S. Gooris, Marion H. M
Yaowu Xiao, Mingsheng Guo, Kevin Parker, M. Shane Hutson 
Dana N. Moses, Michael G. Pontin, J. Herbert Waite, Frank W. Zok 
Philip J. Robinson, Teresa J.T. Pinheiro  Biophysical Journal 
Volume 102, Issue 5, Pages (March 2012)
Phospholipase D Activity Is Regulated by Product Segregation and the Structure Formation of Phosphatidic Acid within Model Membranes  Kerstin Wagner,
P.J. Caspers, G.W. Lucassen, G.J. Puppels  Biophysical Journal 
Eric D. Siggia, Jennifer Lippincott-Schwartz, Stefan Bekiranov 
Volume 101, Issue 9, Pages (November 2011)
Volume 96, Issue 12, Pages (June 2009)
Volume 85, Issue 6, Pages (December 2003)
Volume 90, Issue 10, Pages (May 2006)
Conformational Homogeneity and Excited-State Isomerization Dynamics of the Bilin Chromophore in Phytochrome Cph1 from Resonance Raman Intensities  Katelyn M.
Evidence of Cholesterol Accumulated in High Curvature Regions: Implication to the Curvature Elastic Energy for Lipid Mixtures  Wangchen Wang, Lin Yang,
Saroj Kumar, Andreas Barth  Biophysical Journal 
George D. Dickinson, Ian Parker  Biophysical Journal 
Jocelyn Étienne, Alain Duperray  Biophysical Journal 
Dynamic Role of Cross-Linking Proteins in Actin Rheology
Huan Lei, George Em Karniadakis  Biophysical Journal 
Presentation transcript:

Volume 107, Issue 10, Pages 2253-2262 (November 2014) A Raman Microspectroscopy Study of Water and Trehalose in Spin-Dried Cells  Alireza Abazari, Nilay Chakraborty, Steven Hand, Alptekin Aksan, Mehmet Toner  Biophysical Journal  Volume 107, Issue 10, Pages 2253-2262 (November 2014) DOI: 10.1016/j.bpj.2014.09.032 Copyright © 2014 Biophysical Society Terms and Conditions

Figure 1 Raman scattering spectra collected from (a) dry cell lysate, (b–e) mixtures of cell lysate/trehalose at ratios of 1:1, 1:2, 1:4, and 1:10 g trehalose/g dry weight. Inset: blow-up of the region 720–1800 cm−1. Annotations – 1), 851 cm−1 (saccharides, trehalose), 2), 920 cm−1 (C-C stretch of saccharides), 3), 1583 cm−1 (attributed to C=C stretch in L-tryptophan, various nucleic acids, guanine, phenylalanine), 4), 1667 cm−1 (protein band, Amide I), 5), ∼2940 cm−1 (C-H stretch of organic matter), 6), 3250–3350 cm−1 (O–H symmetric stretch low energy band), 7), 3350–3500 cm−1 (O–H antisymmetric stretch high energy band). Biophysical Journal 2014 107, 2253-2262DOI: (10.1016/j.bpj.2014.09.032) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 2 (A) Ratio of the Raman intensity of the peak at 1667 cm−1, representing proteins, to the C-H stretch peak intensity at 2940 cm−1, representing all the organic matter, at various LYS/TRE ratios against water content. (B) Calibration curve for (trehalose/protein) ratio based on intensity ratio of 851 cm−1 to 1667 cm−1 in oven-dried (0 g water/g dry weight) samples. (C) Ratio of O-H stretch intensities at 3430 cm−1 to 3300 cm−1 at various LYS/TRE ratios against water content (Inset: The intensity ratio 3430 cm−1 to 3300 cm−1 for nitrogen-dried samples plotted against TRE/LYS ratios. Dashed line denotes the background intensity not from water). (D) Ratio of the O-H stretch intensity at 3430 cm−1 to that of C-H stretch at 2940 cm−1 at various LYS/TRE ratios against water content. Biophysical Journal 2014 107, 2253-2262DOI: (10.1016/j.bpj.2014.09.032) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 3 (A1 and A2) Brightfield images of C3A and TRET cells, embedded in a trehalose layer after spin-coating and desiccation under nitrogen flow. The white dotted line represents the XZ plane of scan. (B) Area-averaged intracellular spectrum collected from C3A and TRET cells. (C) Area-averaged spectra collected from the extracellular thin layer of trehalose. Biophysical Journal 2014 107, 2253-2262DOI: (10.1016/j.bpj.2014.09.032) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 4 Reconstructed confocal Raman images of C3A (A1–A3) and TRET (B1–B3) cells, based on protein (row 1), trehalose (row 2), and O-H stretch (row 3) contrasts. Images show cross sections of cells in the XZ plane, with air at the top and CaF2 substrate at the bottom. The thin gray lines constitute the approximate boundaries of the cells (C1–C3) Respective distributions of proteins, trehalose, and O-H stretch across the cell width along the thick dashed white line. (D and E) Estimated amount of trehalose/protein and water/dry weight ratios from I851/I1667 and I3300/I2940 ratios, respectively. Biophysical Journal 2014 107, 2253-2262DOI: (10.1016/j.bpj.2014.09.032) Copyright © 2014 Biophysical Society Terms and Conditions