Crystallography H. K. D. H. Bhadeshia Introduction and point groups

Slides:



Advertisements
Similar presentations
Finite Element Method CHAPTER 4: FEM FOR TRUSSES
Advertisements

Assignment deadline Monday Explain in a one page essay, how an iron alloy can be designed to emulate the nickel based superalloy, containing ordered precipitates.
2D Geometric Transformations
© T Madas. We can extend the idea of rotational symmetry in 3 dimensions:
1 Vol. 01. p Vol. 01. p Vol. 01. p.20.
1 Vol. 03. p Vol. 03. p Vol. 03. p.21.
1 Vol. 02. p Vol. 02. p Vol. 02. p.19.
1 Vol. 03. p Vol. 03. p Vol. 03. p.16.
1 Vol. 02. p Vol. 02. p Vol. 02. p.30.
1 Vol. 03. p Vol. 03. p Vol. 03. p.35.
1 Vol. 02. p Vol. 02. p Vol. 02. p.10.
1 Vol. 01. p Vol. 01. p Vol. 01. p.14.
Physical Metallurgy 17 th Lecture MS&E 410 D.Ast DRAFT UNFINISHED !!!
DIFFUSIONLESS TRANSFORMATIONS
Introduction and point groups Stereographic projections Low symmetry systems Space groups Deformation and texture Interfaces, orientation relationships.
Retained Austenite in TRIP-Assisted Steels role of transformation plasticity China Steel.
Introduction and point groups Stereographic projections Low symmetry systems Space groups Deformation and texture Interfaces, orientation relationships.
Introduction and point groups Stereographic projections Low symmetry systems Space groups Deformation and texture Interfaces, orientation relationships.
ENGR 225 Section 2.1. Review ~ Force per Area Normal Stress –The average normal stress can be determined from σ = P / A, where P is the internal axial.
1/12/2015PHY 752 Spring Lecture 11 PHY 752 Electrodynamics 11-11:50 AM MWF Olin 107 Plan for Lecture 1: Reading: Chapters 1-2 in Marder’s text.
Introduction and point groups Stereographic projections Low symmetry systems Space groups Deformation and texture Interfaces, orientation relationships.
Compensation of residual stress in welds using phase transformation.
Homogeneous deformations Crystallography H. K. D. H. Bhadeshia.
General Introduction to Symmetry in Crystallography A. Daoud-Aladine (ISIS)
Dr. Wang Xingbo Fall , 2005 Mathematical & Mechanical Method in Mechanical Engineering.
CSCE 452 Intro to Robotics CSCE 452: Lecture 1 Introduction, Homogeneous Transformations, and Coordinate frames.
CSCI480/582 Lecture 8 Chap.2.1 Principles of Key-framing Techniques Feb, 9, 2009.
Properties of Rotations
Crystallography Lecture notes Many other things.
Outline Deformation Strain Displacement Vectors Strain ellipse Linear strain Shear strain Quantifying strain.
Crystallography lll. 230 space groups Combine 32 point groups (rotational symmetry) with a. 14 Bravais lattices (translational symmetry) b.glide planes.
Preferred orientation Stereographic projections of pole density random single crystal oriented polycrystalline material.
Unit 2 Vocabulary. Line of Reflection- A line that is equidistant to each point corresponding point on the pre- image and image Rigid Motion- A transformation.
Rock Deformation I. Rock Deformation Collective displacements of points in a body relative to an external reference frame Deformation describes the transformations.
Geometry Transformation s.  There are 3 types of rigid transformations:  Translation – shapes slide  Rotation – shapes turn  Reflection – shapes flip.
New paradigm for fcc-bcc martensitic transformations
Crystallography H. K. D. H. Bhadeshia Introduction and point groups
lattice Wannier functions
Complete theory for martensitic transformations
Materials, transformation temperatures & strength
Lecture Rigid Body Dynamics.
Rigid Body transformation Lecture 1
Multiple, simultaneous, martensitic transformations transformation texture intensities
Transformation Texture of Allotriomorphic Ferrite in Steel Dae Woo Kim, R. S. Qin, H.K.D.H Badeshia Graduate Institute of Ferrous Technology (GIFT) Pohang.
Crystallography H. K. D. H. Bhadeshia Introduction and point groups
Crystallography H. K. D. H. Bhadeshia Introduction and point groups
Crystallography H. K. D. H. Bhadeshia Introduction and point groups
Rotation / Angle of Rotation / Center of Rotation

Reflections & Rotations
Concepts of stress and strain
Materials Science and Metallurgy Mathematical Crystallography
Materials Science and Metallurgy Mathematical Crystallography
Crystallography H. K. D. H. Bhadeshia Introduction and point groups
Unit 7: Transformations
Crystallography H. K. D. H. Bhadeshia Introduction and point groups
Rigid Body Transformations
Crystallography H. K. D. H. Bhadeshia Introduction and point groups
Crystallography H. K. D. H. Bhadeshia Introduction and point groups
Deformation and texture
Reflections in Coordinate Plane
1 µm Surface 1 Surface 2 50 µm Srinivasan & Wayman, 1968.
Concepts of stress and strain
© T Madas.
Crystallography H. K. D. H. Bhadeshia Introduction and point groups
All Change Your name 30 May 2019 Spin Faster Skills I need:
Rigid Body Transformations
Crystal structure determination and space groups
Crystallography lll.
Crystallography Orientation relationships Metric tensor
Presentation transcript:

Crystallography H. K. D. H. Bhadeshia Introduction and point groups Stereographic projections Low symmetry systems Space groups Deformation and texture Interfaces, orientation relationships Martensitic transformations

lattice invariant deformation is

rigid body rotation required to produce invariant-line shape deformation related to lattice invariant deformation transformation strain rigid rotation Bain strain

Orientation Relationship

Shape deformation

Displacement vector d of P

Crystallographic texture due to displacive transformation International Journal of Materials Research, Vol. 99, 2008, 342-346.