DNA Electrophoresis 2007-2008.

Slides:



Advertisements
Similar presentations
More Basic Biotechnology Tools
Advertisements

PACKET 11- DNA TECHNOLOGY. WHAT DO WE ALREADY KNOW ABOUT DNA?  DNA is __________ stranded  DNA is made up of four bases: ____, ____,_____, and _____.
Biotechnology A Brave New World Practical DNA Technology Uses Forensics – Sequencing DNA of crime suspects Diagnosis of disease – DNA screening.
RESTRICTION ENZYMES & GEL ELECTROPHORESIS ANALYSIS OF PRECUT LAMBDA DNA.
Restriction Enzymes and Gel Electrophoresis
AP Biology More Basic Biotechnology Tools Sorting & Copying DNA.
SC.912.L Forensics and DNA fingerprinting Discuss the technologies associated with forensic medicine and DNA identification, including restriction.
LAY OUT YARN PIECES ON YOUR DESK DON’T STRETCH ! TRIM ALL YOUR YARN PIECES SO THEY ARE THE SAME LENGTH- 60 cm Image from :
Micropipette Tutorial From the Science Dept at SHS
AP Biology Lecture #37 Gel Electrophoresis Uses of genetic engineering Genetically modified organisms (GMO) – enabling plants to produce new proteins.
Genetic Engineering Biotechnology HISTORY OF GENETIC ENGINEERING Before technology, humans were using the process of selective breeding to produce the.
Biotechnology Recombinant DNA DNA produced by combining DNA from different sources.
AP Biology Biotechnology Slide show by Kim Foglia (modified) Blue edged slides are Kim’s.
AP Biology More Basic Biotechnology Tools Sorting & Copying DNA.
LAY OUT 3 YARN PIECES ON YOUR DESK DON’T STRETCH ! TRIM ALL YOUR YARN PIECES SO THEY ARE THE SAME LENGTH- 50 cm Image from :
AP Biology DNA Fingerprinting AP Biology Many uses of restriction enzymes…  Now that we can cut DNA with restriction enzymes…  we can cut.
Aim: How can we analyze DNA?
More Basic Biotechnology Tools Sorting & Copying DNA.
 How do we compare DNA fragments?  separate fragments by size  How do we separate DNA fragments?  run it through a gelatin  agarose  made from algae.
AP Biology Biotechnology AP Biology Biotechnology today  Genetic Engineering  Electrophoresis  Recombinant Technology  Polymerase Chain.
DNA Fingerprinting Gel Electrophoresis Sometimes we comparing DNA from two or more sources. BUT it would take too long to compare all of it!
Bacteria  Bacteria are great!  one-celled organisms  reproduce by mitosis  easy to grow, fast to grow  generation every ~20 minutes.
LAY OUT 3 YARN PIECES ON YOUR DESK DON’T STRETCH ! TRIM ALL YOUR YARN PIECES SO THEY ARE THE SAME LENGTH- 50 cm Image from :
Biotechnology Biotechnology today Genetic Engineering – manipulation of DNA – if you are going to engineer DNA & genes & organisms, then you need a set.
Slide 1 of 24 Copyright Pearson Prentice Hall 14–3 Human Molecular Genetics 14-3 Human Molecular Genetics.
RESTRICTION ENZYMES & GEL ELECTROPHORESIS FORENSIC DNA FINGERPRINTING.
Regents Biology Biotechnology Gel Electrophoresis.
AP Biology What do you notice about these phrases? radar racecar Madam I’m Adam Able was I ere I saw Elba a man, a plan, a canal, Panama Was.
Gel Electrophoresis Sorting & copying DNA Many uses of restriction enzymes … Now that we can cut DNA with restriction enzymes … ◦ We can cut up DNA from.
DNA Forensics Bio Interpret how DNA is used for comparison and identification of organisms.
More Basic Biotechnology Tools
DO NOW Please hand in your outlines Then Answer:
Gel Electrophoresis
Biotechnology Tools Sorting & Copying DNA
Biotechnology Gel Electrophoresis.
More Basic Biotechnology Tools
DNA Forensics Bio Interpret how DNA is used for comparison and identification of organisms.
More Basic Biotechnology Tools
DNA Fingerprinting Cloning Human Genome Project
DNA Fingerprinting.
DNA Fingerprinting.
Read pages 298, What is polyploidy? Allopolyploid? Aneuploidy
More Basic Biotechnology Tools
Enduring Understandings
Biotechnology – The Tool Kit
More Basic Biotechnology Tools
DNA Fingerprinting Gel Electrophoresis.
Biotechnology – Gel Electrophoresis
Restriction Enzymes & Electrophoresis
Biotechnology Gel Electrophoresis
DESKTOP RFLP ANALYSIS Brookings Biology Kelly Riedell
More Basic Biotechnology Tools
restriction enzymes hard at work
Biotechnology
Biotechnology Gel Electrophoresis
More Basic Biotechnology Tools
More Basic Biotechnology Tools
Biotechnology Gel Electrophoresis
Biotechnology Gel Electrophoresis
More Basic Biotechnology Tools
Biotechnology
Aim: Biotechnology Gel Electrophoresis Warm-up: HW:
Biotechnology Gel Electrophoresis
DNA Fingerprinting.
DNA Technology.
Biotechnology Gel Electrophoresis
Biotechnology Gel Electrophoresis
FROM KIM FOGLIA explorebiology
Biotechnology Gel Electrophoresis
More Basic Biotechnology Tools
Presentation transcript:

DNA Electrophoresis 2007-2008

Many uses of restriction enzymes… Now that we can cut DNA with restriction enzymes… ______________________________________________________________________________________________________ why? forensics medical diagnostics ___________________ evolutionary relationships

Comparing cut up DNA How do we compare DNA fragments? ____________________________ How do we separate DNA fragments? __________________ agarose made from algae

“swimming through Jello” Gel electrophoresis _______________________________________________________________________ ______________________ when it’s in an electrical field it moves toward the positive side DNA         – + “swimming through Jello”

“swimming through Jello” Gel electrophoresis DNA moves in an electrical field… so how does that help you compare DNA fragments? ________________________________________ small pieces travel farther large pieces travel slower & lag behind DNA        – + “swimming through Jello”

DNA & restriction enzyme Gel Electrophoresis DNA & restriction enzyme - wells longer fragments power source gel shorter fragments + completed gel

fragments of DNA separate out based on size Running a gel cut DNA with restriction enzymes 1 2 3 Stain DNA ethidium bromide binds to DNA fluoresces under UV light

______________________________________________________________________________________ creates different fragment sizes & different band pattern

Uses: Forensics Comparing DNA sample from crime scene with suspects & victim suspects crime scene sample S1 S2 S3 V – DNA  +

DNA fingerprints Comparing blood samples on defendant’s clothing to determine if it belongs to victim DNA fingerprinting ________________________________________________________________________ ~unique patterns

electrophoresis use in forensics 1st case successfully using DNA evidence 1987 rape case convicting Tommie Lee Andrews “standard” semen sample from rapist blood sample from suspect “standard” “standard” semen sample from rapist blood sample from suspect “standard”

Electrophoresis use in forensics Evidence from murder trial Do you think suspect is guilty? blood sample 1 from crime scene blood sample 2 from crime scene blood sample 3 from crime scene “standard” blood sample from suspect OJ Simpson blood sample from victim 1 N Brown blood sample from victim 2 R Goldman “standard”

Uses: Medical diagnostic Comparing normal allele to disease allele chromosome with normal allele 1 chromosome with disease-causing allele 2 allele 1 allele 2 – DNA  Example: test for Huntington’s disease +

Uses: Paternity Who’s the father? – Mom F1 F2 child DNA  +

Uses: Evolutionary relationships Comparing DNA samples from different organisms to measure evolutionary relationships turtle snake rat squirrel fruitfly – 1 3 2 4 5 1 2 3 4 5 DNA  +

Differences at the DNA level Why is each person’s DNA pattern different? ____________________________ ___________________________ made up of repeated patterns each person may have different number of repeats many sites on our 23 chromosomes with different repeat patterns GCTTGTAACGGCCTCATCATCATTCGCCGGCCTACGCTT CGAACATTGCCGGAGTAGTAGTAAGCGGCCGGATGCGAA GCTTGTAACGGCATCATCATCATCATCATCCGGCCTACGCTT CGAACATTGCCGTAGTAGTAGTAGTAGTAGGCCGGATGCGAA

DNA patterns for DNA fingerprints Allele 1 GCTTGTAACGGCCTCATCATCATTCGCCGGCCTACGCTT CGAACATTGCCGGAGTAGTAGTAAGCGGCCGGATGCGAA repeats cut sites Cut the DNA GCTTGTAACG GCCTCATCATCATCGCCG GCCTACGCTT CGAACATTGCCG GAGTAGTAGTAGCGGCCG GATGCGAA 1 2 3 – DNA  + allele 1

Differences between people Allele 1 cut sites cut sites GCTTGTAACGGCCTCATCATCATTCGCCGGCCTACGCTT CGAACATTGCCGGAGTAGTAGTAAGCGGCCGGATGCGAA Allele 2: more repeats GCTTGTAACGGCCTCATCATCATCATCATCATCCGGCCTACCGAACA TTGCCGGAGTAGTAGTAGTAGTAGTAGGCCGG 1 2 3 DNA fingerprint – DNA  + allele 1 allele 2