Lesson – Teacher Notes Standard:

Slides:



Advertisements
Similar presentations
WARM UP 1. Explain how to graph a linear equation written in slope-intercept form. 2. Explain how to graph a linear equation written in point-slope form.
Advertisements

Level 1 Recall Recall of a fact, information, or procedure. Level 2 Skill/Concept Use information or conceptual knowledge, two or more steps, etc. Level.
Systems of Linear Equations Recalling Prior Knowledge.
Bell Work Copy the Diamond Problems below onto your paper.  Then use the pattern you discovered to complete each one. 
For each rule make a table, graph, and draw figure 0, 1, and 2.
Lesson – Teacher Notes Standard:
An Overview of Algebra Connections. What’s new? Numbering system ~ Chapter 2/Section 1/Lesson 3 Five Ways of Thinking Justifying, Generalizing,
How can you see growth in the rule?
Lesson – Teacher Notes Standard: 8.F.A.2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically.
In Lesson 3.1.3, you used a graphing tool to represent all of the x → y pairs that follow a particular rule.  Today you will learn how to make your own.
In Chapter 3, you studied different ways to represent patterns. You organized information into tables, graphed information about patterns, and learned.
Lesson – Teacher Notes Standard:
Lesson – Teacher Notes Standard: 8.SP.A.1 Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association.
You have been looking at geometric patterns and ways in which those patterns can be represented with x→y tables, graphs, and equations. In Lesson 4.1.2,
Lesson – Teacher Notes Standard:
Lesson – Teacher Notes Standard:
In the last two lessons, you examined several patterns
Lesson Concept: Products, Factors, and Factor Pairs
Lesson – Teacher Notes Standard:
Lesson – Teacher Notes Standard: Preparation for 6.RP.3c
Bell Work.
Lesson – Teacher Notes Standard: Preparation for 6.RP.3c
In Lesson , you wrote rules for patterns found in x → y tables
Lesson – Teacher Notes Standard:
Lesson – Teacher Notes Standard:
Lesson 15 Linear Equations The Slope Formula.
PARENT GRAPH FOR LINEAR EQUATIONS
In the last two lessons, you examined several patterns
Bell Work.
Lesson – Teacher Notes Standard:
Lesson – Teacher Notes Standard:
Bell Work.
Objectives Identify linear functions and linear equations.
The graph represents a function because each domain value (x-value) is paired with exactly one range value (y-value). Notice that the graph is a straight.
Lesson – Teacher Notes Standard: 8.EE.C.7b
Lesson – Teacher Notes Standard:
Lesson – Teacher Notes Standard: 8.EE.C.7a and 7b
Lesson – Teacher Notes Standard: 8.EE.C.7b
Lesson – Teacher Notes Standard:
Lesson – Teacher Notes Standard:
Lesson – Teacher Notes Standard:
Lesson – Teacher Notes Standard:
Lesson Day 2 – Teacher Notes
High School – Pre-Algebra - Unit 8
Lesson – Teacher Notes Standard:
Lesson – Teacher Notes Standard:
Lesson What are the connections? Lesson Objective:
Lesson – Teacher Notes Standard:
Lesson – Teacher Notes Standard: Preparation for 8.F.A.1
Lesson Objectives: I will be able to …
Lesson Day 2 – Teacher Notes
Lesson – Teacher Notes Standard: Preparation for 7.EE.B.4a, b
Bell Work.
Bell Work.
Lesson – Teacher Notes Standard:
Lesson – Teacher Notes Standard:
Bell Work.
2.2: Graphing a linear equation
Bell Work.
7.3 Linear Equations and Their Graphs
Lesson – Teacher Notes Standard:
Write an Equation Given Two Points
Bell Work Problem: You have a 10 foot ladder leaning up against the side of the house. The ladder is sitting 5 feet from the base of the house. At what.
Bell Work Problem: You have a 10 foot ladder leaning up against the side of the house. The ladder is sitting 5 feet from the base of the house. At what.
Lesson – Teacher Notes Standard:
Writing Rules for Linear Functions Pages
Lesson Day 1 – Teacher Notes
Lesson – Teacher Notes Standard:
Lesson – Teacher Notes Standard:
Bell Work.
Presentation transcript:

Lesson 3.1.3 – Teacher Notes Standard: 8.F.1, 8.F.2, 8.F.3, 8.F.4 Functions with a heavy emphasis on rules, graphs, and tables. Chapter 8 - Further practice identifying functions, (linear and non-linear) Chapters 4 – Additional practice on rate of change and comparing representations Chapter 7 - Continue with comparing representations Lesson Focus: Students expand their knowledge of multiple representations by creating a table, rule, and graph of data. Refrain from giving the official mathematical term of “slope” and “y-intercept”. This section of the text is building the conceptual understanding of the formula. The mathematical terms will come in a later chapter. When teaching problems 3-19 and 3-20, do not hand out calculators to students. This problem is best completed as a whole group, direct instruction, and using the CPM Student eTool found in the eBook. (3-18, 3-19, 3-20) I can represent a function in a table or graph. I can generate a function rule from a graph or table. I can recognize a function form a table or graph. Calculator: No Literacy/Teaching Strategy: Peer Check (Whole lesson)

Bell Work

In the last two lessons, you examined several patterns In the last two lessons, you examined several patterns. You learned how to represent the patterns in a table and with a rule. For the next few days, you will learn a powerful new way to represent a pattern and make predictions. As you work with your team today, use these focus questions to help direct your discussion: What is the rule? How can you represent the pattern?

3-18. On the Lesson 3.1.3 Resource Page provided by your teacher, find the “Big C’s” pattern shown bellow. Figures 1, 2, and 3. Draw Figure 0 and Figure 4 on the grid provided on the resource page.

On the resource page or using the 3-18 Student eTool (CPM), represent the number of tiles in each figure with: • An x → y table. • An algebraic rule. • A graph. c. How many tiles will be in Figure 5? Justify your answer in at least two different ways. d. What will Figure 100 look like? How many tiles will it have? How can you be sure?

3-19. Use graphing paper or the 3-19 to 3-22 Student eTool  to analyze the pattern further and make predictions. Graph the information from your x → y table for problem 3‑18.  What do you notice? Find another x → y pair that you think belongs in your table.  Plot the point on your graph.  Does it look correct?  How can you tell?  Imagine that you made up 20 new x → y pairs.  Where do you think their points would lie if you added them to the graph? 

3-20. On the same graph that contains the data points, graph the algebraic equation for the pattern from problem 3-18. What do you notice? Why did that happen? Charles wonders about connecting the points of the “Big C’s” data. When the points are connected with an unbroken line or curve, the graph is called continuous. If the graph of the tile pattern is continuous, what does that suggest about the tile pattern? Explain. Jessica prefers to keep the graph of the tile-pattern data as separate points. This is called a discrete graph. Why might a discrete graph be appropriate for this data?

Extra Practice 1.

3.

5.

8.

9.