فصل چهارم مدارهای ترکیبی.

Slides:



Advertisements
Similar presentations
//HDL Example 4-10 // //Gate-level description of circuit of Fig. 4-2 module analysis (A,B,C,F1,F2); input.
Advertisements

Verilog.
The Verilog Hardware Description Language
CPEN Digital System Design
Verilog Intro: Part 1.
Full Adder Section 4.5 Spring, 2014 J.Ou. Schedule 62/3MondayBinary addition: full adder 72/5WednesdayBinary addition: full adder/four-bit adder L2/6ThursdayLab.
SYEN 3330 Digital SystemsJung H. Kim Chapter SYEN 3330 Digital Systems Chapters 4 – Part3: Verilog – Part 1.
Chapter 4 -- Modular Combinational Logic. Decoders.
Combinational Circuits. Analysis Diagram Designing Combinational Circuits In general we have to do following steps: 1. Problem description 2. Input/output.
فصل چهارم مدارهای ترکیبی.
Binary Addition. Binary Addition (1) Binary Addition (2)
Combinational Logic Chapter 4. Digital Circuits Introduction Logic circuits for digital systems may be combinational or sequential. A combinational.
Chapter 3 Continued Logic Gates Logic Chips Combinational Logic Timing Sequential Logic Flip Flops Registers Memory State Machines.
//HDL Example 3-3 // //Stimulus for simple circuit module stimcrct; reg A,B,C; wire x,y; circuit_with_delay swd(A,B,C,x,y);
Homework Reading Machine Projects Labs
Combinational Logic1 DIGITAL LOGIC DESIGN by Dr. Fenghui Yao Tennessee State University Department of Computer Science Nashville, TN.
TDC 311 Digital Logic. Truth Tables  AND  OR  NOT  NAND  NOR  XOR  XNOR.
Part 2: DESIGN CIRCUIT. LOGIC CIRCUIT DESIGN x y z F F = x + y’z x y z F Truth Table Boolean Function.
Adders, subtractors, ALUs
CS 105 Digital Logic Design
Morgan Kaufmann Publishers
Digital Electronics.
Combinational Logic Chapter 4.
Outline Analysis of Combinational Circuits Signed Number Arithmetic
Binary Addition CSC 103 September 17, 2007.
XOR and XNOR Logic Gates. XOR Function Output Y is TRUE if input A OR input B are TRUE Exclusively, else it is FALSE. Logic Symbol  Description  Truth.
CORRECTION Last session, I have made a mistake about two digital coding methods. I explained Hamming code as Grey code mistakenly. Here is correct explanation.
+ CS 325: CS Hardware and Software Organization and Architecture Combinational Circuits 1.
Combinational Circuits
SUPLEMENTARY CHAPTER 1: An Introduction to Digital Logic The Architecture of Computer Hardware and Systems Software: An Information Technology Approach.
Digital Components and Combinational Circuits Sachin Kharady.
ADDERS Half Adders Recall that the basic rules of binary addition are as indicated below in Table 2-9. A circuit known as the half-adder carries out these.
1 Chapter 4 Combinational Logic Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists of input variables,
ECE 3110: Introduction to Digital Systems Chapter 6 Combinational Logic Design Practices Adders, subtractors, ALUs.
Combinational Logic. Digital Circuits Introduction Logic circuits for digital systems may be combinational or sequential. A combinational circuit.
Digital System Ch4-1 Chapter 4 Combinational Logic Ping-Liang Lai ( 賴秉樑 ) Digital System 數位系統.
1 Lecture #7 EGR 277 – Digital Logic Reading Assignment: Chapter 4 in Digital Design, 3 rd Edition by Mano Chapter 4 – Combinational Logic Circuits A)
Lecture 9 Topics: –Combinational circuits Basic concepts Examples of typical combinational circuits –Half-adder –Full-adder –Ripple-Carry adder –Decoder.
CPEN Digital System Design
ECE 3110: Introduction to Digital Systems Chapter 5 Combinational Logic Design Practices X-OR gates and Parity circuits Comparators Adders, subtractors,
9/15/09 - L15 Decoders, Multiplexers Copyright Joanne DeGroat, ECE, OSU1 Decoders and Multiplexer Circuits.
Universal college of engineering & technology. .By Harsh Patel)
1 KU College of Engineering Elec 204: Digital Systems Design Lecture 10 Multiplexers MUX: –Selects binary information from one of many input lines and.
Digital Design Module –II Adders Amit Kumar Assistant Professor SCSE, Galgotias University, Greater Noida.
HDL Model Combinational circuits. module halfadder(s, cout, a, b); input a, b; output s, cout; xor g1(s, a, b); and g2(cout, a, b); endmodule.
Chapter1: Introduction Digital System Designs and Practices Using Verilog HDL and 2008~2010, John Wiley 1-1 Chapter 1: Introduction Prof. Ming-Bo.
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Logic Design Dr. Oliver Faust.
ECE 3110: Introduction to Digital Systems Chapter 5 Combinational Logic Design Practices Adders,subtractors, ALUs.
Digital Circuits Design Chin-Sung Lin Eleanor Roosevelt High School.
Presented by A. Maleki Fall Semester, 2010
Mantıksal Tasarım – BBM231 M. Önder Efe
Designing Combinational Logic Circuits in Verilog - 1
Combinational Circuits
CS2100 Computer Organisation
Part 4 Combinational Logic.
Combinational Logic Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists of input variables, logic gates,
Combinational Circuits
1 Chapter 4 Combinational Logic Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists of input variables,
Introduction to DIGITAL CIRCUITS MODELING & VERIFICATION using VERILOG [Part-I]
Chapter 4 Combinational Logic
Introduction to Verilog
FIGURE 4.1 Block diagram of combinational circuit
Digital System Design Combinational Logic
Combinational Circuits
Supplement on Verilog adder examples
Electronics for Physicists
LOGIC Circuits.
Overview of Digital Electronics
ECB2212-Digital Electronics Numbering Systems
Combinational Circuit Design
Presentation transcript:

فصل چهارم مدارهای ترکیبی

مدارهای ترکیبی مدار های منطقی ترکیبی (circuits without a memory) 1. Combinational 2. Sequential LOGIC CIRCUITS: مدار های منطقی ترکیبی (circuits without a memory) در این مدار ها مقدار خروجی فقط به مقدار فعلی ورودیها بستگی دارد. مدارهای منطقی ترتیبی (circuits with memory) در این مدار ها مقدار خروجی به مقدار فعلی ورودیها و حالت مدار بستگی دارد. این مدارها از گیتهای منطقی و عناصر ذخیره اطلاعات (حافظه) استفاده می کنند و در فصلهای 5 تا 9 مورد بررسی قرار می گیرند.

مدارهای ترکیبی مهمترین مدارهای ترکیبی: Adders جمع کننده Subtractorsتفریق کننده Comparatorsمقایسه کننده Decodersدیکدر Encodersانکدر Multiplexersتسهیم کننده Available in IC’s as MSI and used as standard cells in complex VLSI (ASIC)

آنالیز منطق ترکیبی

آنالیز منطق ترکیبی

آنالیز منطق ترکیبی INPUTS Inputs Outputs A B C F1 F2 1 OUTPUTS

مدارهای ترکیبی – کد Verilog //Example 4-10 //------------------------------------------ //Gate-level description of combinational circuit module analysis (A,B,C,F1,F2); input A,B,C; output F1,F2; wire T1,T2,T3,F2not,E1,E2,E3; or g1 (T1,A,B,C); and g2 (T2,A,B,C); and g3 (E1,A,B); and g4 (E2,A,C); and g5 (E3,B,C); or g6 (F2,E1,E2,E3); not g7 (F2not,F2); and g8 (T3,T1,F2not); or g9 (F1,T2,T3); endmodule

مدارهای ترکیبی – کد Verilog //Stimulus to analyze the circuit module test_circuit; reg [2:0]D; *input specified with a 3-bit reg vector D: 0 2 wire F1,F2; *outputs analysis circuit(D[2],D[1],D[0],F1,F2); *D[2]=A, D[1]=B, D[0]=C initial begin D = 3'b000; *D is a 3-bit vector initialized to 000 repeat(7) *The repeat loop gives the 7 binary numbers after 000 #10 D = D + 1'b1; *D is incremented by 1 after 10 ns end $monitor ("ABC = %b F1 = %b F2 =%b ",D, F1, F2); *Display truth table endmodule Simulation Log: ABC = 000 F1 = 0 F2 = 0 ABC = 001 F1 = 1 F2 = 0 ABC = 010 F1 = 1 F2 = 0

طراحی مدارات ترکیبی از روی خصوصیات وتعریف مسئله تعداد ورودیها و خروجیها را مشخص کنید. جدول درستی را تشکیل دهید و ارتباط ورودیها و خروجیها را مشخص کنید. با استفاده از جدول کارنا مدار را ساده کنید. دیاگرام منطقی مدار را بکشید و درستی طراحی خود را تحقیق کنید.

طراحی مدارات ترکیبی مثال: مداری با سه ورودی و یک خروجی طراحی کنید بطوریکه مقدار خروجی فقط هنگامیکه مقدار عددی معادل ورودیها کمتر از سه باشد، با 1 برابر باشد. y y z x y z F 1 00 01 11 10 1 x 1 z

ARITHMETIC LOGIC UNIT (ALU) Copyright: Tylavsky, Arizona State University

جمع کننده دودویی – نیم جمع کننده   A B S C 1

جمع کننده کامل (full adder) Inputs Outputs A B C F1 F2 1 INPUTS OUTPUTS C

جمع کننده کامل به فرم SOP

پیاده سازی جمع کننده کامل با دو نیم جمع کننده

Full-adder چهار بیتی 3 2 1 i 1 Ci Ai Bi Si Ci+1

Full-adder چهار بیتی – کد verilog //Gate-level hierarchical description of 4-bit adder // Description of half adder (see Fig 4-5b) module halfadder (S,C,x,y); input x,y; output S,C; //Instantiate primitive gates xor (S,x,y); and (C,x,y); endmodule //Description of full adder (see Fig 4-8) module fulladder (S,C,x,y,z); input x,y,z; wire S1,D1,D2; //Outputs of first XOR and two AND gates //Instantiate the halfadder halfadder HA1 (S1,D1,x,y), HA2 (S,D2,S1,z); or g1(C,D2,D1);

Full-adder چهار بیتی – کد verilog //Description of 4-bit adder (see Fig 4-9) module _4bit_adder (S,C4,A,B,C0); input [3:0] A,B; input C0; output [3:0] S; output C4; wire C1,C2,C3; //Intermediate carries //Instantiate the fulladder fulladder FA0 (S[0],C1,A[0],B[0],C0), FA1 (S[1],C2,A[1],B[1],C1), FA2 (S[2],C3,A[2],B[2],C2), FA3 (S[3],C4,A[3],B[3],C3); endmodule