Quine-McClusky Minimization Method

Slides:



Advertisements
Similar presentations
Glitches & Hazards.
Advertisements

CSEE 4823 Advanced Logic Design Handout: Lecture #2 1/22/15
Combinational Logic Circuits Chapter 2 Mano and Kime.
EEE324 Digital Electronics Ian McCrumRoom 5B18, Lecture 5: Software for.
1 Combinational Logic Network design Chapter 4 (continued ….)
ELEC Digital Logic Circuits Fall 2008 Logic Minimization (Chapter 3) Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and.
Quine-McCluskey (Tabular) Minimization  Two step process utilizing tabular listings to:  Identify prime implicants (implicant tables)  Identify minimal.
CS2100 Computer Organisation K-maps: Finding PIs and EPIs (AY2014/5) Semester 2.
ITEC 352 Lecture 4 Boolean logic / Karnaugh Maps.
4.2 Strategy for minimization So far, we used an intuitive approach to decide how the 1s in the K-map should be grouped together to obtain the minimum-cost.
KARNAUGH MAP Introduction Strategy for Minimization Minimization of Product-of-Sums Forms Minimization of More Complex Expressions Don't care Terms 1.
Quine-McClusky Minimization Method Module M4.3 Section 5.3.
CS 140 Lecture 5 Professor CK Cheng 10/10/02. Part I. Combinational Logic 1.Spec 2.Implementation K-map: Sum of products Product of sums.
CS 140 Lecture 3 Professor CK Cheng Tuesday 4/09/02.
CS 140 Lecture 4 Professor CK Cheng Tuesday 5/08/02.
SYEN 3330 Digital SystemsJung H. Kim Chapter SYEN 3330 Digital Systems Chapter 2 -Part 8.
Karnaugh Maps Discussion D6.2 Section Karnaugh Maps Minterm X Y F m m m m X Y F(X,Y) = m0 | m2 | m3 =  (0,2,3)
CMPE100 – Logic Design Tracy Larrabee – Winter ‘08 CE 100 Intro to Logic Design Tracy Larrabee –3-37A E2 (9-3476) –
Lecture Six Chapter 5: Quine-McCluskey Method Dr. S.V. Providence COMP 370.
Karnaugh Maps Discussion D6.2 Appendix H. Karnaugh Maps Minterm x y f m m m m x y f(x,y) = m0 | m2 | m3 =  (0,2,3)
CS 140 Lecture 4 Combinational Logic: K-Map Professor CK Cheng CSE Dept. UC San Diego 1.
Quine-McClusky Minimization Method Discussion D3.2.
Example: Given a 4-bit input combination N=N 3 N 2 N 1 N 0, this function produces a 1 output for N=1,2,3,5,7,11,13, and 0 otherwise.  According to the.
CS 140 Lecture 4 Professor CK Cheng 4/11/02. Part I. Combinational Logic Implementation K-Map Given F R D Obj: Minimize sum of products Proc: Draw K-Map.
ENEE244-02xx Digital Logic Design Lecture 10. Announcements HW4 assigned, due 10/9.
ECE 301 – Digital Electronics Karnaugh Maps and Determining a Minimal Cover (Lecture #8) The slides included herein were taken from the materials accompanying.
CS 140 Lecture 5 Professor CK Cheng CSE Dept. UC San Diego.
CS 140 Lecture 5 Professor CK Cheng CSE Dept. UC San Diego 1.
Combinational Logic Circuits Chapter 2 Mano and Kime.
EECC341 - Shaaban #1 Lec # 7 Winter Combinational Circuit Minimization Canonical sum and product logic expressions do not provide a circuit.
Computer Architecture I: Digital Design Dr. Robert D. Kent Lecture 3 Simplification of Boolean Expressions.
Chapter 3. Minimization of Switching Functions. Given a sw function f(x 1, x 2, …, x n ) and some cost criteria, find a representation of f which minimizes.
ECE 2110: Introduction to Digital Systems PoS minimization Don’t care conditions.
Karnaugh map minimization Basic Terms (1) minterm maxterm - a single 1 - a single 0 1. implicant
ECE 3110: Introduction to Digital Systems Symplifying Products of sums using Karnaugh Maps.
Computer Organization CSC 405 Quine-McKluskey Minimization.
ENEE244-02xx Digital Logic Design Lecture 12. Announcements HW4 due today HW5 is up on course webpage. Due on 10/16. Recitation quiz on Monday, 10/13.
Karnaugh Maps ELEC 311 Digital Logic and Circuits Dr. Ron Hayne Images Courtesy of Cengage Learning.
Prof. Hsien-Hsin Sean Lee
1 Gate Level Minimization EE 208 – Logic Design Chapter 3 Sohaib Majzoub.
EECS 270 Lecture 10. K-map “rules” – Only circle adjacent cells (remember edges are adjacent!) – Only circle groups that are powers of 2 (1, 2,
CEC 220 Digital Circuit Design Implicants Wed, Sept. 23 CEC 220 Digital Circuit Design Slide 1 of 10.
ECE 301 – Digital Electronics Minimizing Boolean Expressions using K-maps, The Minimal Cover, and Incompletely Specified Boolean Functions (Lecture #6)
CHAPTER 6 Quine-McCluskey Method
Lecture 6 Quine-McCluskey Method
ELEC Digital Logic Circuits Fall 2014 Logic Minimization (Chapter 3)
3-7 Other Two-level Implementations
Lecture #6 EGR 277 – Digital Logic
CSE 140: Components and Design Techniques for Digital Systems
QUINE-McCLUSKEY METHOD
Plotting functions not in canonical form
CS 352 Introduction to Logic Design
ECE 2110: Introduction to Digital Systems
Optimized Implementation of Logic Function
ECE 331 – Digital System Design
Chapter 6 Quine-McCluskey Method
EE4271 VLSI Design Logic Synthesis EE 4271 VLSI Design.
ECE 331 – Digital System Design
Digital Logic & Design Dr. Waseem Ikram Lecture 12.
Digital Logic & Design Dr. Waseem Ikram Lecture 13.
CSE 140: Components and Design Techniques for Digital Systems
Chapter 3 Gate-level Minimization.
Optimized Implementation of Logic Function
SYEN 3330 Digital Systems Chapter 2 – Part 6 SYEN 3330 Digital Systems.
Minimization of Switching Functions
Professor CK Cheng CSE Dept. UC San Diego
CHAPTER 6 QUINE-McCLUSKEY METHOD
Quine-McCluskey Method
ECE 331 – Digital System Design
Presentation transcript:

Quine-McClusky Minimization Method Lecture L5.3 Section 5.3

Quine-McCluskey Method Tabular Representations Prime Implicants Essential Prime Implicants

Tabular Representations YZ 00 01 11 10 !W & Y & !Z 0-10 WX 00 !W & X 01-- 1 01 1 1 1 1 11 1 1 1 X & Y -11- 10 1 W & !Y & Z 1-01 F = X & Y # !W & Y & !Z # W & !Y & Z # !W & X

Prime Implicants Each product term is an implicant F = X & !Y & Z # !X & !Z # !X & Y A product term that cannot have any of its variables removed and still imply the logic function is called a prime implicant.

Prime Implicants X YZ 00 01 11 10 1 -10 1 1 1 1 1 1-- F = Y & !Z # X

Prime Implicants X YZ 00 01 11 10 1 -10 Minterm X Y Z F 0 O O O 0 1 -10 Minterm X Y Z F 0 O O O 0 1 0 0 1 0 2 0 1 0 1 3 1 1 1 0 4 1 O O 1 5 1 0 1 1 6 1 1 0 1 7 1 1 1 1 1-- F = Y & !Z # X

Finding Prime Implicants Step 1 Step 2 Step 3 2 0 1 0 4 1 O 0 5 1 0 1 6 1 1 0 7 1 1 1 (2,6) - 1 0 (4,5,6,7) 1 - - (4,5) 1 0 - (4,6,5,7) 1 - - (4,6) 1 - 0 (5,7) 1 - 1 (6,7) 1 1 - All unchecked entries are Prime Implicants -10 Y & !Z 1-- X

Prime Implicants X YZ 00 01 11 10 1 -10 Minterm X Y Z F 0 O O O 0 1 -10 Minterm X Y Z F 0 O O O 0 1 0 0 1 0 2 0 1 0 1 3 1 1 1 0 4 1 O O 1 5 1 0 1 1 6 1 1 0 1 7 1 1 1 1 1-- F = Y & !Z # X

Essential Prime Implicants YZ 00 01 11 10 WX Find the essential prime implicants using the Q-M method. 00 1 1 1 1 01 1 1 11 1 1 10 1 1

Essential Prime Implicants minterms YZ 00 01 11 10 WX 0 0000 1 0001 2 0010 8 1000 3 0011 5 0101 10 1010 7 0111 14 1110 15 1111 00 1 1 1 1 01 1 1 11 1 1 10 1 1

Finding Prime Implicants Step 1 Step 2 Step 3 0 0000 1 0001 2 0010 8 1000 3 0011 5 0101 10 1010 7 0111 14 1110 15 1111 (0,1) 000- (0,1,2,3) 00-- (0,2) 00-0 (0,2,1,3) 00-- (0,8) -000 (0,2,8,10) -0-0 (1,3) 00-1 (1,5) 0-01 (0,8,2,10) -0-0 (2,3) 001- (1,5,3,7) 0--1 (2,10) -010 (1,3,5,7) 0--1 (8,10) 10-0 (3,7) 0-11 6 Prime Implicants (5,7) 01-1 1-10 -111 111- 00-- -0-0 0--1 (10,14) 1-10 (7,15) -111 (14,15) 111-

Find Essential Prime Implicants Covered minterms Minterms 0 1 2 3 5 7 8 10 14 15 1-10 -111 111- 00-- -0-0 0--1 10,14 7,15 14,15 0,1,2,3 0,2,8,10 1,3,5,7 X X X X * X X X X X X X X X X X X X X

3 Prime Implicants F = !W & Z # W & X & Y # !X & !Z YZ 00 01 11 10 WX 0--1 01 1 1 !W & Z 11 1 1 111- 10 1 1 !X & !Z W & X & Y -0-0