Chapter 3 Transport Layer

Slides:



Advertisements
Similar presentations
2: Transport Layer 31 Transport Layer 3. 2: Transport Layer 32 TCP Flow Control receiver: explicitly informs sender of (dynamically changing) amount of.
Advertisements

Transport Layer3-1 TCP. Transport Layer3-2 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection.
1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July A note on the use.
3-1 TCP Protocol r point-to-point: m one sender, one receiver r reliable, in-order byte steam: m no “message boundaries” r pipelined: m TCP congestion.
1 Chapter 3 Transport Layer. 2 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4.
1 Transport Layer Lecture 9 Imran Ahmed University of Management & Technology.
Week 9 TCP9-1 Week 9 TCP 3 outline r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management.
Announcement Homework 2 in tonight –Will be graded and sent back before Th. class Midterm next Tu. in class –Review session next time –Closed book –One.
Chapter 3 Transport Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 12.
EEC-484/584 Computer Networks Lecture 15 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Announcement Project 2 finally ready on Tlab Homework 2 due next Mon tonight –Will be graded and sent back before Tu. class Midterm next Th. in class –Review.
Transport Layer 3-1 outline r TCP m segment structure m reliable data transfer m flow control m congestion control.
Transport Layer 3-1 Fast Retransmit r time-out period often relatively long: m long delay before resending lost packet r detect lost segments via duplicate.
Transport Layer3-1 Congestion Control. Transport Layer3-2 Principles of Congestion Control Congestion: r informally: “too many sources sending too much.
Transport Layer 3-1 Outline r TCP m Congestion control m Flow control.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
Transport Layer Transport Layer: TCP. Transport Layer 3-2 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional.
Week 9 TCP9-1 Week 9 TCP 3 outline r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Chapter 3 Transport Layer
1 Chapter 3 Transport Layer. 2 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4.
Data Communication and Networks
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles.
Transport Layer1 Flow and Congestion Control Ram Dantu (compiled from various text books)
3: Transport Layer3b-1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection m MSS: maximum.
Principles of Congestion Control Congestion: informally: “too many sources sending too much data too fast for network to handle” different from flow control!
17-1 Last time □ UDP socket programming ♦ DatagramSocket, DatagramPacket □ TCP ♦ Sequence numbers, ACKs ♦ RTT, DevRTT, timeout calculations ♦ Reliable.
Transport Layer 3- Midterm score distribution. Transport Layer 3- TCP congestion control: additive increase, multiplicative decrease Approach: increase.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
CS-1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Advance Computer Networks Lecture#09 & 10 Instructor: Engr. Muhammad Mateen Yaqoob.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Transport Layer3-1 Transport Layer If you are going through Hell Keep going.
Transport Layer session 1 TELE3118: Network Technologies Week 11: Transport Layer TCP Some slides have been taken from: r Computer Networking:
09-Transport Layer: TCP Transport Layer.
Chapter 3 outline 3.1 Transport-layer services
Chapter 3 outline 3.1 Transport-layer services
Chapter 3 outline 3.1 Transport-layer services
CS 1652 Jack Lange University of Pittsburgh
TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 full duplex data:
Chapter 3 outline 3.1 transport-layer services
Chapter 6 TCP Congestion Control
CS-1652 Jack Lange University of Pittsburgh
Introduction to Networks
Chapter 3 outline 3.1 Transport-layer services
CS1652 TCP Jack Lange University of Pittsburgh
Review: UDP demultiplexing TCP demultiplexing Multiplexing?
Chapter 3 outline 3.1 Transport-layer services
Chapter 3 Transport Layer
Transport Layer Our goals:
Flow and Congestion Control
Chapter 3 outline 3.1 Transport-layer services
Chapter 3 outline 3.1 Transport-layer services
Chapter 6 TCP Congestion Control
CSE 4213: Computer Networks II
October 1st, 2013 CS-1652 Jack Lange University of Pittsburgh
TCP Overview.
CS-1652 Congestion Control Jack Lange University of Pittsburgh
Transport Layer: Congestion Control
Chapter 3 outline 3.1 Transport-layer services
TCP flow and congestion control
Chapter 3 Transport Layer
October 4th, 2011 CS-1652 Jack Lange University of Pittsburgh
Chapter 3 Transport Layer
Presentation transcript:

Chapter 3 Transport Layer A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following: If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we’d like people to use our book!) If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR All material copyright 1996-2004 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach Featuring the Internet, 3rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. Transport Layer

Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer

Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer

UDP: User Datagram Protocol [RFC 768] “no frills,” “bare bones” Internet transport protocol “best effort” service, UDP segments may be: lost delivered out of order to app connectionless: no handshaking between UDP sender, receiver each UDP segment handled independently of others Why is there a UDP? no connection establishment (which can add delay) simple: no connection state at sender, receiver small segment header no congestion control: UDP can blast away as fast as desired Transport Layer

UDP: more other UDP uses often used for streaming multimedia apps loss tolerant rate sensitive other UDP uses DNS SNMP reliable transfer over UDP: add reliability at application layer application-specific error recovery! 32 bits source port # dest port # Length, in bytes of UDP segment, including header length checksum Application data (message) UDP segment format Transport Layer

Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 point-to-point: one sender, one receiver reliable, in-order byte steam: no “message boundaries” pipelined: TCP congestion and flow control set window size send & receive buffers full duplex data: bi-directional data flow in same connection MSS: maximum segment size connection-oriented: handshaking (exchange of control msgs) init’s sender, receiver state before data exchange flow controlled: sender will not overwhelm receiver Transport Layer

TCP segment structure source port # dest port # application data 32 bits application data (variable length) sequence number acknowledgement number Receive window Urg data pnter checksum F S R P A U head len not used Options (variable length) URG: urgent data (generally not used) counting by bytes of data (not segments!) ACK: ACK # valid PSH: push data now (generally not used) # bytes rcvr willing to accept RST, SYN, FIN: connection estab (setup, teardown commands) Internet checksum (as in UDP) Transport Layer

simple telnet scenario TCP seq. #’s and ACKs Seq. #’s: byte stream “number” of first byte in segment’s data ACKs: seq # of next byte expected from other side cumulative ACK Q: how receiver handles out-of-order segments A: TCP spec doesn’t say, - up to implementor Host A Host B User types ‘C’ Seq=42, ACK=79, data = ‘C’ host ACKs receipt of ‘C’, echoes back ‘C’ Seq=79, ACK=43, data = ‘C’ host ACKs receipt of echoed ‘C’ Seq=43, ACK=80 time simple telnet scenario Transport Layer

TCP Round Trip Time and Timeout Q: how to set TCP timeout value? longer than RTT but RTT varies too short: premature timeout unnecessary retransmissions too long: slow reaction to segment loss Q: how to estimate RTT? SampleRTT: measured time from segment transmission until ACK receipt ignore retransmissions SampleRTT will vary, want estimated RTT “smoother” average several recent measurements, not just current SampleRTT Transport Layer

TCP Round Trip Time and Timeout EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT Exponential weighted moving average influence of past sample decreases exponentially fast typical value:  = 0.125 Transport Layer

Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer

Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer

TCP Flow Control flow control sender won’t overflow receiver’s buffer by transmitting too much, too fast flow control receive side of TCP connection has a receive buffer: speed-matching service: matching the send rate to the receiving app’s drain rate app process may be slow at reading from buffer Transport Layer

TCP Flow control: how it works Rcvr advertises spare room by including value of RcvWindow in segments Sender limits unACKed data to RcvWindow guarantees receive buffer doesn’t overflow (Suppose TCP receiver discards out-of-order segments) spare room in buffer = RcvWindow = RcvBuffer-[LastByteRcvd - LastByteRead] Transport Layer

Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer

TCP Connection Management Three way handshake: Step 1: client host sends TCP SYN segment to server specifies initial seq # no data Step 2: server host receives SYN, replies with SYNACK segment server allocates buffers specifies server initial seq. # Step 3: client receives SYNACK, replies with ACK segment, which may contain data Recall: TCP sender, receiver establish “connection” before exchanging data segments initialize TCP variables: seq. #s buffers, flow control info (e.g. RcvWindow) client: connection initiator Socket clientSocket = new Socket("hostname","port number"); server: contacted by client Socket connectionSocket = welcomeSocket.accept(); Transport Layer

TCP Connection Management (cont.) Closing a connection: client closes socket: clientSocket.close(); Step 1: client end system sends TCP FIN control segment to server Step 2: server receives FIN, replies with ACK. Closes connection, sends FIN. client FIN server ACK close closed timed wait Transport Layer

TCP Connection Management (cont.) Step 3: client receives FIN, replies with ACK. Enters “timed wait” - will respond with ACK to received FINs Step 4: server, receives ACK. Connection closed. Note: with small modification, can handle simultaneous FINs. client server closing FIN ACK closing FIN ACK timed wait closed closed Transport Layer

TCP Connection Management (cont) TCP server lifecycle TCP client lifecycle Transport Layer

Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer

Principles of Congestion Control informally: “too many sources sending too much data too fast for network to handle” different from flow control! manifestations: lost packets (buffer overflow at routers) long delays (queueing in router buffers) a top-10 problem! Transport Layer

Causes/costs of congestion: scenario 1 unlimited shared output link buffers Host A lin : original data Host B lout two senders, two receivers one router, infinite buffers no retransmission large delays when congested maximum achievable throughput Transport Layer

Causes/costs of congestion: scenario 2 one router, finite buffers sender retransmission of lost packet Host A lout lin : original data l'in : original data, plus retransmitted data Host B finite shared output link buffers Transport Layer

Causes/costs of congestion: scenario 2 l in out = always: (goodput) “perfect” retransmission only when loss: retransmission of delayed (not lost) packet makes larger (than perfect case) for same l in out > l in l out R/2 lin lout b. a. c. R/4 R/3 “costs” of congestion: more work (retrans) for given “goodput” unneeded retransmissions: link carries multiple copies of pkt Transport Layer

Causes/costs of congestion: scenario 3 four senders multihop paths timeout/retransmit l in Q: what happens as and increase ? l in Host A lout lin : original data l'in : original data, plus retransmitted data finite shared output link buffers Host B Transport Layer

Causes/costs of congestion: scenario 3 Host A lout Host B Another “cost” of congestion: when packet dropped, any “upstream transmission capacity used for that packet was wasted! Transport Layer

Approaches towards congestion control Two broad approaches towards congestion control: End-end congestion control: no explicit feedback from network congestion inferred from end-system observed loss, delay approach taken by TCP Network-assisted congestion control: routers provide feedback to end systems single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM) explicit rate sender should send at Transport Layer

Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer

TCP Congestion Control end-end control (no network assistance) sender limits transmission: LastByteSent-LastByteAcked  CongWin Roughly, CongWin is dynamic, function of perceived network congestion How does sender perceive congestion? loss event = timeout or 3 duplicate acks TCP sender reduces rate (CongWin) after loss event three mechanisms: AIMD slow start conservative after timeout events rate = CongWin RTT Bytes/sec Transport Layer

TCP AIMD multiplicative decrease: cut CongWin in half after loss event additive increase: increase CongWin by 1 MSS every RTT in the absence of loss events: probing Long-lived TCP connection Transport Layer

TCP Slow Start When connection begins, increase rate exponentially fast until first loss event When connection begins, CongWin = 1 MSS Example: MSS = 500 bytes & RTT = 200 msec initial rate = 20 kbps available bandwidth may be >> MSS/RTT desirable to quickly ramp up to respectable rate Transport Layer

TCP Slow Start (more) When connection begins, increase rate exponentially until first loss event: double CongWin every RTT done by incrementing CongWin for every ACK received Summary: initial rate is slow but ramps up exponentially fast Host A Host B one segment RTT two segments four segments time Transport Layer

Refinement After 3 dup ACKs: Philosophy: 3 dup ACKs indicates network capable of delivering some segments timeout before 3 dup ACKs is “more alarming” After 3 dup ACKs: CongWin is cut in half window then grows linearly But after timeout event: CongWin instead set to 1 MSS; window then grows exponentially to a threshold, then grows linearly Transport Layer

Refinement (more) Implementation: Q: When should the exponential increase switch to linear? A: When CongWin gets to 1/2 of its value before timeout. Implementation: Variable Threshold At loss event, Threshold is set to 1/2 of CongWin just before loss event Transport Layer

Summary: TCP Congestion Control When CongWin is below Threshold, sender in slow-start phase, window grows exponentially. When CongWin is above Threshold, sender is in congestion-avoidance phase, window grows linearly. When a triple duplicate ACK occurs, Threshold set to CongWin/2 and CongWin set to Threshold. When timeout occurs, Threshold set to CongWin/2 and CongWin is set to 1 MSS. Transport Layer

TCP sender congestion control Event State TCP Sender Action Commentary ACK receipt for previously unacked data Slow Start (SS) CongWin = CongWin + MSS, If (CongWin > Threshold) set state to “Congestion Avoidance” Resulting in a doubling of CongWin every RTT Congestion Avoidance (CA) CongWin = CongWin+MSS * (MSS/CongWin) Additive increase, resulting in increase of CongWin by 1 MSS every RTT Loss event detected by triple duplicate ACK SS or CA Threshold = CongWin/2, CongWin = Threshold, Set state to “Congestion Avoidance” Fast recovery, implementing multiplicative decrease. CongWin will not drop below 1 MSS. Timeout CongWin = 1 MSS, Set state to “Slow Start” Enter slow start Duplicate ACK Increment duplicate ACK count for segment being acked CongWin and Threshold not changed Transport Layer

TCP Fairness Fairness goal: if K TCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/K TCP connection 1 bottleneck router capacity R TCP connection 2 Transport Layer

Why is TCP fair? Two competing sessions: Additive increase gives slope of 1, as throughout increases multiplicative decrease decreases throughput proportionally R equal bandwidth share loss: decrease window by factor of 2 congestion avoidance: additive increase Connection 2 throughput loss: decrease window by factor of 2 congestion avoidance: additive increase Connection 1 throughput R Transport Layer

Fairness (more) Fairness and parallel TCP connections Fairness and UDP nothing prevents app from opening parallel cnctions between 2 hosts. Web browsers do this Example: link of rate R supporting 9 cnctions; new app asks for 1 TCP, gets rate R/10 new app asks for 11 TCPs, gets R/2 ! Fairness and UDP Multimedia apps often do not use TCP do not want rate throttled by congestion control Instead use UDP: pump audio/video at constant rate, tolerate packet loss Research area: TCP friendly Transport Layer