Group Selection Design Pattern

Slides:



Advertisements
Similar presentations
SP 5: Biologically Inspired Techniques for “Organic IT” Final Year Report Participants UniBO, UPF, Telenor, RAL Lead partner: Bologna (UniBO)
Advertisements

Solving Collective Commons Problems: Future Scenarios for P2P Finance David Hales, University of Szeged, Hungary Diversity in Macro.
Modeling and Analysis of Random Walk Search Algorithms in P2P Networks Nabhendra Bisnik, Alhussein Abouzeid ECSE, Rensselaer Polytechnic Institute.
Search and Replication in Unstructured Peer-to-Peer Networks Pei Cao, Christine Lv., Edith Cohen, Kai Li and Scott Shenker ICS 2002.
Tags and Image Scoring for Robust Cooperation By Nathan Griffiths Presented at AAMAS 2008.
Decentralised Structural Reorganisation in Agent Organisations Ramachandra Kota.
CS401 presentation1 Effective Replica Allocation in Ad Hoc Networks for Improving Data Accessibility Takahiro Hara Presented by Mingsheng Peng (Proc. IEEE.
University of Bologna, Italy How to cheat BitTorrent and why nobody does Simon Patarin and David Hales University of Bologna ECCS 2006,
Project funded by the Future and Emerging Technologies arm of the IST Programme Recent directions in DELIS / Overview of on-going work David Hales
Cooperation through the endogenous evolution of social structure David Hales & Shade Shutters The Open University & Arizona State University
CSS-TW1 Cooperation in Selfish Systems incorporating TagWorld I Welcome! David Hales, University of Bologna.
A Distributed Clustering Framework for MANETS Mohit Garg, IIT Bombay RK Shyamasundar School of Tech. & Computer Science Tata Institute of Fundamental Research.
SP 5: Biologically Inspired Techniques for “Organic IT” Report for months Participants UniBO, UPF, Telenor, RAL Lead partner: Bologna (UniBO)
Towards Cooperative Self- Organized Replica Management Work in Progress David Hales, Andrea Marcozzi (University of Bologna) Giovanni Cortese (University.
Project funded by the Future and Emerging Technologies arm of the IST Programme Cooperation with Strangers David Hales Department of.
Example Department of Computer Science University of Bologna Italy ( Decentralised, Evolving, Large-scale Information Systems (DELIS)
Rationality meets the tribe: Some models of cultural group selection David Hales, The Open University Hales, D., (2010) Rationality.
Engineering with Sociological Metaphors: Examples and Prospects University of Bologna This work is partially supported by the European.
SLAC and SLACER: Simple copy & rewire algorithms for trust and cooperation in P2P David Hales, Stefano Arteconi, Ozalp Babaoglu University of Bologna,
Project funded by the Future and Emerging Technologies arm of the IST Programme Socially Inspired Approaches to Evolving Cooperation David Hales
Can Tags Build Working Systems? From MABS to ESOA Attempting to apply results gained from Multi-Agent- Based Social Simulation (MABSS)
P2P Interaction in Socially Intelligent ICT David Hales Delft University of Technology (Currently visiting University of Szeged, Hungary)
Multi-Patch Cooperative Specialists With Tags Can Resist Strong Cheaters, Bruce Edmonds, Feb 2013, ECMS 2013, Aalesund, Norway, slide 1 Multi-Patch Cooperative.
Evolving networks for cooperation Dagstuhl CCT3 DELIS Workshop Sept 3rd-4th 2005 Presented by David Hales University of Bologna, Italy
Self-Organising Networks of Services without Money or Contracts David Hales, University of Bologna, Italy First International Workshop and Summer School.
Freelib: A Self-sustainable Digital Library for Education Community Ashraf Amrou, Kurt Maly, Mohammad Zubair Computer Science Dept., Old Dominion University.
You are all social scientists: you just don’t know it yet David Hales (University of Bologna, Italy) SASO 2007, Cambridge. Mass.
Putting “tags” to work Attempting to apply results gained from agent- based social simulation (ABSS) to MAS. Dr David Hales
David Hales (University of Bologna) University of Bologna, Italywww.davidhales.com WARNING! Superficial sociological interpretation followed by simplistic.
Emergent Group-Like Selection in a Peer-to-Peer Network ECCS Conference Paris, Nov. 16 th, 2005 David Hales University of Bologna, Italy
Evolving cooperation in one-time interactions with strangers Tags produce cooperation in the single round prisoner’s dilemma and it’s.
Yongqin Gao, Greg Madey Computer Science & Engineering Department University of Notre Dame © Copyright 2002~2003 by Serendip Gao, all rights reserved.
A Membership Management Protocol for Mobile P2P Networks Mohamed Karim SBAI, Emna SALHI, Chadi BARAKAT.
6 December On Selfish Routing in Internet-like Environments paper by Lili Qiu, Yang Richard Yang, Yin Zhang, Scott Shenker presentation by Ed Spitznagel.
Project funded by the Future and Emerging Technologies arm of the IST Programme From Selfish Nodes to Cooperative Networks – Emergent Link-based Incentives.
The Evolution of Specialisation in Groups – Tags (again!) David Hales Centre for Policy Modelling, Manchester Metropolitan University, UK.
Socially Inspired Computing Engineering with Social Metaphors.
Evolving P2P overlay networks with Tags, SLAC and SLACER for Cooperation and possibly other things… Saarbrücken SP6 workshop July 19-20th 2005 Presented.
Data Consolidation: A Task Scheduling and Data Migration Technique for Grid Networks Author: P. Kokkinos, K. Christodoulopoulos, A. Kretsis, and E. Varvarigos.
Project funded by the Future and Emerging Technologies arm of the IST Programme Altruism “for free” using Tags David Hales Department.
Simple Rewire Protocols for Cooperation in Dynamic Networks David Hales, Stefano Arteconi, Ozalp Babaoglu University of Bologna, Italy Bio-Inspired Workshop,
Social Simulation for Self-* Systems: An idea whose time has come? David Hales University of Bologna, Italy In collaboration with: Stefano.
Deploying Sensors for Maximum Coverage in Sensor Network Ruay-Shiung Chang Shuo-Hung Wang National Dong Hwa University IEEE International Wireless Communications.
Evolving Specialisation, Altruism & Group-Level Optimisation Using Tags – The emergence of a group identity? David Hales Centre for Policy Modelling, Manchester.
Evolving Specialisation, Altruism & Group-Level Optimisation Using Tags David Hales Centre for Policy Modelling, Manchester Metropolitan University, UK.
Project funded by the Future and Emerging Technologies arm of the IST Programme Change your tags fast! - A necessary condition for cooperation? David Hales.
Evolution of Cooperation in Mobile Ad Hoc Networks Jeff Hudack (working with some Italian guy)
Emergent Group Selection: Tags, Networks and Society David Hales, The Open University ASU, Thursday, November 29th For more details.
An Evolutional Cooperative Computation Based on Adaptation to Environment Naoyasu UBAYASHI and Tetsuo TAMAI Graduate School of Arts and Sciences University.
Novel Models of Group Selection in Social Structures and Networks David Hales University of Bologna, Italy In collaboration with: Stefano.
Presented by Tae-Seok Kim
Rationality and Power: the “gap in the middle” in ICT
Peer-to-peer networking
International Conference on Sequence Analysis and Related Methods
Web *.0 ? Combining peer production and peer-to-peer systems
A New Multipath Routing Protocol for Ad Hoc Wireless Networks
Evolution for Cooperation
Paraskevi Raftopoulou, Euripides G.M. Petrakis
CASE − Cognitive Agents for Social Environments
Effective Replica Allocation
Peer-to-Peer Information Systems Week 6: Performance
Socially Inspired Approaches to Evolving Cooperation
Towards a Quality Financial Commons?
Self-Organising, Open and Cooperative P2P Societies – From Tags to Networks David Hales Department of Computer Science University of.
Evolution for Cooperation
Altruism “for free” using Tags
Evolving cooperation in one-time interactions with strangers
CHAPTER I. of EVOLUTIONARY ROBOTICS Stefano Nolfi and Dario Floreano
Chained Negotiation for Distributed Notification Services
Brain-inspired Approaches for De Bruijns model of associative memory
Presentation transcript:

Group Selection Design Pattern A number of novel “group selection” models are coming from theoretical biology and computational social science We give initial work towards a “group selection” design pattern or “approach” for creating cooperative distributed systems We present some previous simulation models that use the approach in the form of a design template There are still open issues

Group Selection Models Recent models of “group selection” Based on individual selection Producing dynamic social structures Limit free-riding Increasingly group-level performance Don’t require reciprocity Could be very useful in P2P

Schematic of the evolution of groups in the tag model Schematic of the evolution of groups in the tag model. Three generations (a-c) are shown. White individuals are pro-social (altruistic), black are selfish. Individuals sharing the same tag are shown clustered and bounded by large circles. Arrows indicate group linage. When b is the benefit a pro-social agent can confer on another and c is the cost to that agent then the condition for group selection of pro-social groups is: b > c and mt >> ms Riolo, Axelrod, Cohen, Holland, Hales, Edmonds…

Schematic of the evolution of groups in the network-rewire model Schematic of the evolution of groups in the network-rewire model. Three generations (a-c) are shown. Altruism selected when:b > c and mt >> ms. When t = 1, get disconnected components, when 1 > t > 0.5, get small-world networks Hales, D. & Arteconi, S. (2006) Article: SLACER: A Self-Organizing Protocol for Coordination in P2P Networks. IEEE Intelligent Systems, 21(2):29-35 Santos F. C., Pacheco J. M., Lenaerts T. (2006) Cooperation prevails when individuals adjust their social ties. PLoS Comput Biol 2(10)

Schematic of the evolution of in the group-splitting model Schematic of the evolution of in the group-splitting model. Three generations (a-c) are shown. Altruism is selected if the population is partitioned into m groups of maximum size n and b / c > 1 + n / m. Traulsen, A. & Nowak, M. A. (2006). Evolution of cooperation by multilevel selection. Proceedings of the National Academy of Sciences 130(29):10952-10955.

Group Selection Design Pattern Assumptions: A system is composed of individual entities that can benefit from interaction with other entities The population of entities is partitioned into groups such that interaction is mainly limited to entities within the same group Entities measure their own performance periodically producing a utility value Entities may spontaneously change their behavior and group membership Entities may view and copy some state of other entities Entities desire to increase their performance (utility)

Group Selection Design Pattern Key Aspects: Collective Goal - A desirable goal that the population of entities should attain. Group Boundary Mechanism - How an entity can locate and communicate with in-group members. Intra-Group Interaction - What kinds of utility effecting interactions an entity participates in with other in-group members. Utility Calculation Metric - How an entity calculates a utility value based on its individual goal and in-group interactions. Group Migration Mechanism - How migration between groups is performed.

Group Selection Design Pattern Emergent Process: Entities are grouped in some initially arbitrary way Interactions between entities within groups determine entity utilities Based on utility comparisons between entities, and possibly randomized change, group memberships and interaction behavior (strategy) change over time Groups which produce high utility for their members tend to grow and persist as entities join Groups which produce low utility for their members tend to disperse as entities leave Hence group beneficial behavior tends to be selected

CacheWorld

CacheWorld

CacheWorld

CacheWorld Outline Algorithm capacity and load for each node specify different scenarios maximum number of neighbours (k) currently fixed nodes “satisfied” if all queries submitted to them are answered (over a given period - the load cycle) nodes associated with single unique content item replicated between linked neighbours nodes are “receptive” if they have spare capacity or are not satisfied

CacheWorld Q = queries answered, S = satisfied nodes (very simple scenario, half nodes underloaded, half overloaded, k = 1)

FileWorld

FileWorld

FileWorld

Conclusion Still many open issues for malicious behaviour More of an “approach” than a “pattern” ? Can this approach be used for real deployed systems? Perhaps a similar approach can improve BitTorrent? Currently based in Delft on P2P-Next project: based on tribler.org social bittorrent engine. Includes VTT, BBC, Pioneer, European Broadcasting Union - “EU next generation internet TV standard” Trying to apply these group selection ideas in this deployed system

Fini www.davidhales.com