Dibaryons at CLAS Mikhail Bashkanov.

Slides:



Advertisements
Similar presentations
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Advertisements

“Exotic” hadron-hadron S-wave Interaction Bing-song Zou IHEP, Beijing.
Study of few-body problems at WASA Wasa-at-Cosy. Content General overview General overview –  decays – dd   0 –  -mesic helium The ABC effect The.
N*(2007) observed at LNS Sendai H. Shimizu Laboratory of Nuclear Science Tohoku University Sendai NSTAR2007, Sep.5-8, 2007, Bonn 1670.
Mikhail Bashkanov Dibaryons at COSY Wasa-at-COSY.
Excitation of the Roper Resonance in Single- and Double-Pion Production in NN collisions Roper‘s resonance Roper‘s resonance a resonance without seeing.
Meson spectroscopy with photo- and electro-production Curtis A. Meyer Carnegie Mellon University.
Mikhail Bashkanov Encounters with Di-Baryons from the ABC-effect to a Resonance in the Proton-Neutron System Wasa-at-COSY.
A discovery of the Di-baryon state with Wasa-at-COSY
Molecular Charmonium. A new Spectroscopy? II Russian-Spanish Congress Particle and Nuclear Physics at all Scales and Cosmology F. Fernandez D.R. Entem,
New Interpretation of the ABC Effect in Two-Pion Production in NN collisions Maria Platonova Lomonosov Moscow State University The 22 nd European Conference.
1 On extraction of the total photoabsorption cross section on the neutron from data on the deuteron  Motivation: GRAAL experiment (proton, deuteron) 
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
Beijing, Sept 2nd 2004 Rachele Di Salvo Beam asymmetry in meson photoproduction on deuteron targets at GRAAL MENU2004 Meson-Nucleon Physics and the Structure.
Meson Photoproduction with Polarized Targets   production a)  0 at threshold b) Roper and P 11 (1710)   production a) S 11 -D 13 phase rotation.
Daniel S. Carman Page 1 Hadron Sep , 2015 Daniel S. Carman Jefferson Laboratory N* Spectrum & Structure Analysis of CLAS Data  CLAS12 N*
BLINDBILD Resonance Multiplets in the Two-Baryon System --- Dibaryons Revisited MesonNet Meeting Prague, June , 2013 Heinz Clement Fachbereich Physik.
Qiang Zhao Theory Division Institute of High Energy Physics Chinese Academy of Sciences 第十届全国粒子物理学术会议,南京, 2008 年 4 月 日 Search for Z(4430) in meson.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
CELSIUS-WASA,WASA-at-COSY: two-pion production in NN collisions T. Skorodko, Physikalisches Institut, Univ.Tubingen.
Systematic study of two-pion production in NN collisions – from single-baryon to di-baryon excitations T. Skorodko, Physikalisches Institut, Univ.Tubingen.
Study of nucleon resonances at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration with B. Julia-Diaz, T.-S. H.
Dynamical coupled-channels study of hadron resonances and strangeness production Hiroyuki Kamano (RCNP, Osaka U.) in collaboration with B. Julia-Diaz (Barcelona.
The pp→pp  0  0 reaction and its limiting case, the fusion to quasibound, in search of ABC effect T. Skorodko, University Tuebingen for CELSIUS-WASA.
Double-Pionic Fusion in Nucleon Collisions on Few Body Systems - The ABC Effect and its Possible Origin Wasa-at-Cosy Celsius Wasa.
University of Salamanca
Hadron excitations as resonant particles in hadron reactions
Satoshi Nakamura (Osaka University)
Extracting h-neutron interaction from g d  h n p data
Institute of High Energy Physics
Hadron Physics at Belle
The study of pentaquark states in the unitary chiral approach
EBAC-DCC analysis of world data on pN, gN, and N(e,e’) reactions
Molecular Structures in Hidden Charm Meson and Charmed Baryon Spectrum
Double Ks0 Photoproduction off the proton at CLAS
Three-body hadronic molecules.
from Belle, BaBar and CLEO
E. Wang, J. J. Xie, E. Oset Zhengzhou University
The Need to Extend the Studies of N* Structure
Center for Nuclear Study, University of Tokyo
Remarks on the hidden-color component
Photoproduction of K* for the study of L(1405)
Recent results on light hadron spectroscopy at BES
In search of K+K- molecule
The dibaryon d* in quark models
Dibaryon production and structure
Decoding the riddle of Y(4260) and Zc(3900) Qiang Zhao
N*ews from COSY May 2011 | Hans Ströher (Forschungszentrum Jülich, Germany)
Search for f-N Bound State in Jefferson Lab Hall-B
d*, a quark model perspective
In-medium properties of the omega meson from a measurement of
Charmed Baryon Spectroscopy and Decays using the Belle Detector
Shedding light on Hexaquarks
First discovery of Double Cabbibo-Suppressed decay: Lc  pK+p- + a
N* Program at COSY April 19, 2009 | Hans Ströher (FZ-Jülich)
Charmonium spectroscopy above thresholds
Wasa-at-Cosy The ABC Effect in Double-Pionic Nuclear Fusion and a pn Resonance as its Possible Origin.
Helicity dependence of g n ® Nπ(π) and the GDH integral on the neutrom
Experiment (Jlab Exp : CLAS eg3)
What can we learn about X resonances at K1.8
Yong-Liang Ma In collaboration with M. Harada
The np -> d p0 reaction measured with g11 data
The data status on p+p-p photo/electro- production with the CLAS
Recent Results of J/ and (2S) at BESII
EBAC-DCC combined analysis of world data on pN and gN processes
Key issues about the nature of Y(4260)
Hexaquarks under the microscope
New States Containing Charm at BABAR
Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab)
Presentation transcript:

Dibaryons at CLAS Mikhail Bashkanov

Baryon-Baryon molecule Meson-Baryon molecule Possible particles Tetraquark Meson-Meson molecule Hexaquark Baryon-Baryon molecule Pentaquark Meson-Baryon molecule 𝑓 0 / 𝑎 0 (980) deuteron 𝑍 + (4430) Λ(1405) d ∗ (2380) 𝑃 𝑐 + (4450) Mikhail Bashkanov "Dibaryons"

Deuteron to Deltaron I(Jp) = 0(3+) I(Jp) = 0(1+) Threshold p n Δ Δ 2.2 MeV p n 80 MeV Δ Δ deuteron d*

d*(2380) The Discovery

Total cross section pn  d00 “d* resonance” 70 MeV  NN*(1440) P. Adlarson et. al Phys. Rev. Lett. 106:242302, 2011

Angular distribution in the peak J=3 J=1 P. Adlarson et. al Phys. Rev. Lett. 106:242302, 2011

Dibaryon hadronic decays PRL 106 (2011) 242302 PLB 721 (2013) 229 WASA data 𝑑 𝜋 0 𝜋 0 𝑑 𝜋 + 𝜋 − pn  d*(2380) 𝑝𝑛 𝑝𝑝 𝜋 − 𝜋 0 𝑝𝑛 𝜋 0 𝜋 0 𝑝𝑛 𝜋 + 𝜋 − PRL 112 (2014) 202301 PRC 90, (2014) 035204 d* PRC 88 (2013) 055208 PLB 743 (2015) 325 d* d*

Argand plot P. Adlarson et al. Phys. Rev. Lett. 112, 202301, (2014) P. Adlarson et al. Phys. Rev. C 90, 035204 , (2014)

𝑑 ∗ (2380) decay branches 𝒅 ∗ decay channel Branching ratio, % 𝑝𝑛 12(3) 𝑑 𝜋 0 𝜋 0 14(1) 𝑑 𝜋 + 𝜋 − 23(2) 𝑝𝑛 𝜋 + 𝜋 − 30(5) 𝑝𝑛 𝜋 0 𝜋 0 12(2) 𝑝𝑝 𝜋 0 𝜋 − 6(1) 𝑛𝑛 𝜋 0 𝜋 + 𝑁𝑁𝜋 0(10)  Eur.Phys.J. A51 (2015) 7, 87

𝑑 ∗ (2380) properties I(Jp) = 0(3+) 𝑴 𝒅 ∗ =𝟐.𝟑𝟖 𝑮𝒆𝑽≈𝟐 𝑴 𝚫 −𝟖𝟎 𝑴𝒆𝑽 𝑴 𝒅 ∗ =𝟐.𝟑𝟖 𝑮𝒆𝑽≈𝟐 𝑴 𝚫 −𝟖𝟎 𝑴𝒆𝑽 𝚪 𝒅 ∗ =𝟕𝟎 𝐌𝐞𝐕≪ 𝚪 𝚫𝚫 =𝟐𝟒𝟎 𝑴𝒆𝑽 Δ 𝒅 ∗ 90 % n p 𝒅 ∗ 10 %

𝑑 ∗ (2380) properties I(Jp) = 0(3+) 𝑴 𝒅 ∗ =𝟐.𝟑𝟖 𝑮𝒆𝑽≈𝟐 𝑴 𝚫 −𝟖𝟎 𝑴𝒆𝑽 𝑴 𝒅 ∗ =𝟐.𝟑𝟖 𝑮𝒆𝑽≈𝟐 𝑴 𝚫 −𝟖𝟎 𝑴𝒆𝑽 𝚪 𝒅 ∗ =𝟕𝟎 𝐌𝐞𝐕≪ 𝚪 𝚫𝚫 =𝟐𝟒𝟎 𝑴𝒆𝑽 Δ 𝒅 ∗ 90 % p Δ 𝒅 ∗ ? % 𝒅 ∗ p 10 % n n

d* photoproduction Experimental verification

𝑑 ∗ (2380) best decay channels Isospin filter pn  dibaryon  dp0p0 3-body reaction pn  dibaryon  pn PWA polarization observables 2-body reaction

𝑑 ∗ (2380) photoproduction 𝛾𝑑→ 𝑑 ∗ 2380 ⟹ 𝐸 𝛾 =550 𝑀𝑒𝑉 | 6𝑞 →| 6𝑞 𝛾𝑑→ 𝑑 ∗ 2380 ⟹ 𝐸 𝛾 =550 𝑀𝑒𝑉 Δ d π g | 6𝑞 →| 6𝑞 𝜎(𝛾𝑑→ 𝑑 ∗ 2380 →𝑑 𝜋 0 𝜋 0 )~10𝑛𝑏 | 6𝑞 ~ 10 −3 𝛼= 1 137

Conventional background ( 𝜋 0 𝜋 0 ) 𝛾𝑑→𝑁 𝑁 ∗ 1520 →𝑑 𝜋 0 𝜋 0 𝜎(𝛾𝑑→𝑑 𝜋 0 𝜋 0 )~10𝑛𝑏 Conventional background: Known Small 𝜎 𝛾𝑑→𝑑 𝜋 0 𝜋 0 𝜎 𝛾𝑑→ 𝑑 ∗ →𝑑 𝜋 0 𝜋 0 ~2 Fix, H. Arenhoevel. Eur. Phys. J. A 25, 115, (2005). M. Egorov, A. Fix, Nucl.Phys. A933 (2015) 104-113

Conventional background – other 𝜋𝜋 channels 𝜎(𝛾𝑑→𝑝𝑛 𝜋 0 𝜋 0 )~8𝜇𝑏 𝜎(𝛾𝑑→𝑑 𝜋 + 𝜋 − )~8𝜇𝑏 𝜎 𝛾𝑑→𝑝𝑛 𝜋 0 𝜋 0 𝜎 𝛾𝑑→ 𝑑 ∗ →𝑝𝑛 𝜋 0 𝜋 0 ~100 𝜎 𝛾𝑑→𝑑 𝜋 + 𝜋 − 𝜎 𝛾𝑑→ 𝑑 ∗ →𝑑 𝜋 + 𝜋 − ~100 Fix, H. Arenhoevel. Eur. Phys. J. A 25, 115, (2005). M. Egorov, A. Fix, Nucl.Phys. A933 (2015) 104-113

𝛾𝑑 → 𝑑 ∗ →𝑑 𝜋 0 𝜋 0 𝑑 ∗ M. Guenther Master Thesis, Basel 2015 𝛾𝑑 → 𝑑 ∗ →𝑑 𝜋 0 𝜋 0 M. Guenther Master Thesis, Basel 2015 Conventional Background M. Egorov, A. Fix, Nucl.Phys. A933 (2015) 104-113 𝑑 ∗

𝛾𝑑 → 𝑑 ∗ →𝑑 𝜋 0 𝜋 0 T. Ishikawa et al.  arXiv:1610.0553, scaled by 0.5 M. Guenther Master Thesis, Basel 2015 Conventional Background M. Egorov, A. Fix, Nucl.Phys. A933 (2015) 104-113 𝑑 ∗

𝛾𝑑→ 𝑑 ∗ →𝑝𝑛 BUT Polarization observables Conventional background 𝜎(𝛾𝑑→𝑝𝑛)~8𝜇𝑏 𝜎(𝛾𝑑→ 𝑑 ∗ 2380 →𝑝𝑛)~10𝑛𝑏 𝜎 𝛾𝑑→𝑝𝑛 𝜎 𝛾𝑑→ 𝑑 ∗ 2380 →𝑝𝑛 ~1000 BUT Polarization observables Federico Ronchetti arXiv 1301.5886

d*(2380) in photoproduction? R. Gilman and F. Gross nucl-th/0111015 (2001) d*  p T. Kamae, T. Fujita Phys. Rev. Lett. 38, Feb 1977, 471 d n H. Ikeda et al., Phys. Rev. Lett. 42, May 1979, 1321 I(Jp) = 0(3+) 𝐌=𝟐.𝟑𝟖 𝐆𝐞𝐕

d* internal structure Experimental verification

Deltaron vs Hexaquark ? ≈33% ≈66% ≈10% ≈90% 0.7 fm Δ L=2 Narrow width Branching ratios Dalitz plots Δ Δ ≈90% ≈10% 𝑀 𝜋𝜋 , PWA F. Huang et al,  Chin.Phys. C39 (2015) 7, 071001

Structure of the resonance. Transition form factor 𝒆 + 𝜸 ∗ 𝒆 − 𝑵 ∗ 𝑵 𝒆 − JLab 𝜸 ∗ 𝒆 − 𝑵 𝑵 ∗

N* internal structure at CLAS * N* N Transition form factor Charge distribution Internal structure

The Roper resonance internal structure LF RQM: I.G. Aznauryan and V.D. Burkert, arXiv:1603.06692 From V. Mokeev talk at NPQCD2016

Hexaquark vs molecule Transition form factor Charge distribution * d*(2380) d Transition form factor Charge distribution Internal structure

𝑑 ∗ (2380) electroproduction g Γ( 𝑑 ∗ →𝛾𝑑)~1𝑘𝑒𝑉 d g Δ d Γ( 𝑑 ∗ →𝛾𝛾𝑑)~1𝑘𝑒𝑉 Δ g

𝑑 ∗ (2380) electroproduction * e- * e- d*(2380) d*(2380) *

𝑑 ∗ (2380) size and structure deuteron d* F. Huang et al,  Chin.Phys. C39 (2015) 7, 071001

The family of dibaryons

Mirror dibaryon d* I(Jp) = 0(3+) I(Jp) = 3(0+) D D D D u u u d d d u u Freeman J. Dyson, Nguyen-Hue Xuong Phys. Rev. Lett. 13(1964) 815 Avraham Gal, Humberto Garcilazo Nucl. Phys. A928, (2014), 73

How many ways can you combine 6q? Isospin 𝑱 𝑷 = 𝟑 + 𝑱 𝑷 = 𝟎 + Strangeness 10 28  * **+* *  ++++ -- d* **+* **+

d* in Lattice

NN vs ΔΔ Δ Δ p n Threshold ? p n Δ Δ 𝟏 𝑺 𝟎 Z=+4 66 keV 2.2 MeV 80 MeV 𝟏 𝑺 𝟎 Z=+4 Δ Δ p n Threshold 66 keV ? 2.2 MeV p n 80 MeV Δ Δ deuteron d*  ”Search for an Isospin I =3 Dibaryon”arXiv:1606.02964, accepted for PLB

How many ways can you combine 6q? Isospin 𝑱 𝑷 = 𝟑 + 𝑱 𝑷 = 𝟎 + Strangeness 10 28  * **+* *  ++++ -- d* **+* **+

Strange dibaryon

d*(2380) SU(3) multiplet Jp = 3+  * *  𝑑 ∗ (2380) 𝑀 𝑑 ∗ − 𝑀 Δ + 𝑀 Σ ∗ < 𝑀 𝑑 𝑠 ∗ ≤ 𝑀 Δ + 𝑀 Σ ∗ * 𝑑 𝑠 ∗ (2.53−2.60) * 𝑑 𝑠𝑠 ∗ (2.68−2.76)  𝑑 𝑠𝑠𝑠 ∗ (2.82−2.90)

Strange Dibaryon 𝑝𝑛 10 𝑑 ∗ (2380) ΔΔ→𝑁𝑁𝜋𝜋 𝑁Λ 𝑑 𝑠 ∗ (2530-2600) Isospin 𝑝𝑛 **+* **+  * d* 10 𝑑 ∗ (2380) Strangeness ΔΔ→𝑁𝑁𝜋𝜋 𝑁Λ 𝑑 𝑠 ∗ (2530-2600) Δ Σ ∗ →(𝑁𝜋)(Λ𝜋)→𝑁𝑁𝜋𝜋𝜋

Reaction  𝜋 + p 𝚫 ++ p d 𝜋 − p n 𝚲 𝚺 ∗− 𝐾 0 𝜋 − 𝜋 − 𝜋 − 𝜋 +

Reaction 𝜋 + 𝜋 − 𝛾𝑑→ 𝐾 0 + 𝑑 𝑠 ∗ →𝑝𝑝2 𝜋 + 3 𝜋 − Δ ++ Σ ∗− Λ 𝜋 − 𝑝 𝜋 + 𝜋 + 𝜋 − 𝛾𝑑→ 𝐾 0 + 𝑑 𝑠 ∗ →𝑝𝑝2 𝜋 + 3 𝜋 − Δ ++ Σ ∗− Λ 𝜋 − 𝑝 𝜋 + 𝑝 𝜋 −

Exploratory search for the 𝑑 𝑠 ∗ g13 beamtime 1.5<𝐸 𝛾 <2.5𝐺𝑒𝑉 7 charged particles in final state Similar analysis for 6 charged particles (unmeasured proton)

Search for the strange dibaryon

Search for the strange dibaryon

Search for the strange dibaryon

Search for the strange dibaryon MonteCarlo Δ ++ Σ ∗−

Conclusion Photo-induced reactions Support from theory The very first dibaryon d*(2380) is established Mass, Width, Quantum numbers, Main decay branches Hints of d*(2380) photoproduction Photo-induced reactions Structure: Hexaquark vs Molecule? Strange dibaryon Support from theory

 * * 𝑑 ∗ (2380) Thank you 

d*(2380) internal structure

d*(2380) internal structure pn  d*  DD  dpp π Δ p 𝑁 1 d 𝑁 2 n Δ π 𝑝 Δ 2 − 𝑝 Δ 2 = 𝑝 𝑁 1 + 𝑝 𝜋 1 − 𝑝 𝑁 2 + 𝑝 𝜋 2 = 𝑝 𝑁 1 − 𝑝 𝑁 2 + 𝑝 𝜋 1 − 𝑝 𝜋 2 ≈ 𝑝 𝜋 1 − 𝑝 𝜋 2 𝑝 𝑁 1 ≈ 𝑝 𝑁 1 𝑝 Δ 2 − 𝑝 Δ 2 ≈ 𝑝 𝜋 1 − 𝑝 𝜋 2 ↔ 𝑀 𝜋𝜋

d*(2380) internal structure and the ABC effect Δ Δ Δ Δ L=2 M. Bashkanov et al, arXiv:1502.07500

Deltaron vs Hexaquark ? ≈33% ≈66% ≈10% ≈90% 0.7 fm Δ L=2 Narrow width Branching ratios Dalitz plots Δ Δ ≈90% ≈10% 𝑀 𝜋𝜋 , PWA F. Huang et al,  Chin.Phys. C39 (2015) 7, 071001

Theory

Dibaryon in Skyrme model David Foster, Nicholas S. Manton, Nucl.Phys. B899 (2015) 513 

d* in Lattice

d* in Lattice

𝒅 ∗ (𝟐𝟑𝟖𝟎) in pn

Expectations p n SAID with resonance SAID A. Pricking, M. Bashkanov, H. Clement: arXiv:1310.5532

𝐴 𝑦 energy dependence at 83° SAID A. Pricking, M. Bashkanov, H. Clement: arXiv:1310.5532

𝐴 𝑦 energy dependence at 83° SAID New SAID solutions P. Adlarson et al. Phys. Rev. Lett. 112, 202301, (2014)

Dimensionless partial wave amplitudes Pole at (𝟐𝟑𝟖𝟎±𝟏𝟎)−𝒊(𝟒𝟎±𝟓) 𝑴𝒆𝑽 Dimensionless partial wave amplitudes Im SP14 SP07 Re 𝜖 3 3 𝐷 3 3 𝐺 3 Resonance in the pn system P. Adlarson et al. Phys. Rev. Lett. 112, 202301, (2014)

Total pn cross-section Devlin et al, PRD8, 136 (73) LisowskI et al, PRL49, 255(82) SAID SP07 SAID new solution P. Adlarson et al. Phys. Rev. Lett. 112, 202301, (2014) P. Adlarson et al. Phys. Rev. C 90, 035204 , (2014)

Effect of d* on other pn observables with d* without d* SP07 R.L. Workman, W.J. Briscoe, I.I. Strakovsky Phys.Rev. C93 (2016), 045201

The benchmark measurement  p d* Measure polarization of both proton and neutron ! d n

New Particle identification detector

New Particle identification detector

Polarimeter

Experiment Target 𝜸 n 𝒑 Θ,𝜙,𝐸 𝚯 ′ ,𝝓′ 𝛾𝑑→ 𝑝 𝑛 Polarimeter

Experiment Target 𝜸 p 𝒏 Θ,𝜙,𝐸 p 𝚯 ′ ,𝝓′ 𝛾𝑑→𝑝 𝑛 Polarimeter

Mirror dibaryon d* I(Jp) = 0(3+) I(Jp) = 3(0+) D D D D u u u d d d u u Freeman J. Dyson, Nguyen-Hue Xuong Phys. Rev. Lett. 13(1964) 815 Avraham Gal, Humberto Garcilazo Nucl. Phys. A928, (2014), 73

NN vs ΔΔ Δ Δ p n Threshold ? p n Δ Δ 𝟏 𝑺 𝟎 Z=+4 66 keV 2.2 MeV 80 MeV 𝟏 𝑺 𝟎 Z=+4 Δ Δ p n Threshold 66 keV ? 2.2 MeV p n 80 MeV Δ Δ deuteron d*

How many ways can you combine 6q? Isospin 𝑱 𝑷 = 𝟑 + 𝑱 𝑷 = 𝟎 + Strangeness 10 28  * **+* *  ++++ -- d* **+* **+

Argand plots 𝚪 𝒅 ∗ →𝒑𝒏 𝚪 𝐭𝐨𝐭 ≈𝟎.𝟏𝟐 𝚪 𝒅 ∗ →𝒑𝒏( 𝟑 𝑫 𝟑 ) ≈𝟏𝟎 𝐌𝐞𝐕 P. Adlarson et al. Phys. Rev. Lett. 112, 202301, (2014) P. Adlarson et al. Phys. Rev. C 90, 035204 , (2014) 𝚪 𝒅 ∗ →𝒑𝒏 𝚪 𝐭𝐨𝐭 ≈𝟎.𝟏𝟐 𝚪 𝒅 ∗ →𝒑𝒏( 𝟑 𝑫 𝟑 ) ≈𝟏𝟎 𝐌𝐞𝐕 𝚪 𝒅 ∗ →𝒑𝒏( 𝟑 𝑮 𝟑 ) ≈𝟏 𝐌𝐞𝐕

S-wave Δ−Δ only? N D L=0 L=0,2 D N N D L=2 L=0,2,4 D N

S-wave Δ−Δ only? N D 𝑑 ∗ (2380) p L=0 L=0,2 90% L=2 n D N 𝑑 ∗ (2380) p d* (2380) pn N D 𝑑 ∗ (2380) p L=0 L=0,2 90% L=2 n D N 𝑑 ∗ (2380) p N L=4 D 10% n L=2 L=0,2,4 D N

S-wave Δ−Δ only? N D 𝑑 ∗ (2380) p L=0 L=0,2 90% L=2 n D N 𝑑 ∗ (2380) p d* (2380) pn N D 𝑑 ∗ (2380) p L=0 L=0,2 90% L=2 n D N 𝑑 ∗ (2380) p N L=4 D 10% n L=2 L=0,2,4 D 𝑑 ∗ (2380) D N D

Total cross section pN  d 𝒅 𝝅 + 𝝅 − 𝟏 𝟐 ∙𝒅 𝝅 + 𝝅 𝟎 𝟐∙𝒅 𝝅 𝟎 𝝅 𝟎 P. Adlarson et. al Phys. Lett. B721 (2013) 229

pn  pn00 d* Conventional process +d* d* Conventional process 𝒔 [𝑮𝒆𝑽] 𝒔 [𝑮𝒆𝑽] P. Adlarson et al., Phys.Lett. B743 (2015) 325-332 

Dibaryon non-fusion decays 𝑝𝑝 𝜋 − 𝜋 0 𝑝𝑛 𝜋 0 𝜋 0 𝑝𝑛 𝜋 + 𝜋 − d* d* PRC 88 (2013) 055208 PLB 743 (2015) 325 HADES PLB 750 (2015) 184

The decay modes of the dibaryon Channel Publications d p0p0 M. Bashkanov et. al Phys.Rev.Lett. 102 (2009) 052301 P. Adlarson et. al Phys. Rev. Lett. 106:242302, 2011 P. Adlarson et. al Phys.Lett. B721 (2013) 229-236 d p+p- ppp0p- P. Adlarson et. al Phys. Rev. C 88, 055208 npp0p0 P. Adlarson et. al Phys.Lett. B743 (2015) 325 np A. Pricking, M. Bashkanov, H. Clement. arXiv:1310.5532 P. Adlarson et al. Phys. Rev. Lett. 112, 202301, (2014) P. Adlarson et al. Phys. Rev. C 90, 035204 , (2014) pn e+e- M. Bashkanov, H. Clement, Eur.Phys.J. A50 (2014) 107  3He pp M. Bashkanov et. al Phys.Lett. B637 (2006) 223-228 P. Adlarson et. al Phys. Rev. C 91 (2015) 1, 015201  4He pp P. Adlarson et. al Phys.Rev. C86 (2012) 032201 + activities from other groups M. Bashkanov, Stanley J. Brodsky, H. Clement Phys.Lett. B727 (2013) 438-442

Meson-Baryon molecule Baryon-Baryon molecule Quark systems Meson Baryon Tetraquark Pentaquark Hexaquark Octaquark? Meson-Meson molecule Meson-Baryon molecule Baryon-Baryon molecule 𝚲 𝟏𝟒𝟎𝟓 +𝑵

Molecule vs Hexaquark

Deuteron L=0 n p n p L=2 4 fm 0.9 fm ≈5% 6q configuration ≈0.15%

𝑑 ∗ (2380) - Deltaron? L=0 Δ Δ

Deltaron: the width quest

Deltaron: the width quest

Deltaron: the with quest 2∗Δ(1232) width

Hidden color concept Hexaquark Deltaron M. Bashkanov, Stanley J. Brodsky, H. Clement Phys.Lett. B727 (2013) 438-442 F. Huang et al,  Chin.Phys. C39 (2015) 7, 071001

Deltaron vs Hexaquark L=0 Δ Δ ≈33% ≈66% 0.7 fm 0.9 fm 0.9 fm F. Huang et al,  Chin.Phys. C39 (2015) 7, 071001

Dibaryons a paradigm shift Mikhail Bashkanov "Dibaryons"

DLS puzzle Strong dilepton enhancement over hadronic coctails

DLS puzzle @ 𝑇 𝑁 =1.25 𝐺𝑒𝑉 𝑝𝑝→ 𝑒 + 𝑒 − 𝑋 𝑝𝑛→ 𝑒 + 𝑒 − 𝑋 pp pn 𝑝𝑝→ 𝑒 + 𝑒 − 𝑋 𝑝𝑛→ 𝑒 + 𝑒 − 𝑋 pp pn M. Bashkanov, H. Clement Eur.Phys.J. A50 (2014) 107 Data from G. Agakichiev et al. (HADES Collaboration), Phys. Lett. B 690 (2010) 118

Dibaryon Spectroscopy 𝑑 ? (2800) 𝑑 ? (2600) 𝑑 ∗ (2380)