Suspecting the Rating Agencies Dan diBartolomeo Northfield Information Services January 2012.

Slides:



Advertisements
Similar presentations
Introduction To Credit Derivatives Stephen P. D Arcy and Xinyan Zhao.
Advertisements

Credit Risk. Credit risk Risk of financial loss owing to counterparty failure to perform its contractual obligations. For financial institutions credit.
Introduction CreditMetrics™ was launched by JP Morgan in 1997.
The role these complex securities have played in the current economic turmoil Faculty Panel Discussion October 7, 2008 Kathie Sullivan, PhD Finance.
Fall-02 EMBAF Zvi Wiener Based on Chapter 7 in Fabozzi Bond Markets, Analysis and Strategies Corporate.
November 2007 Overview of Collateralized Loan Obligations.
A New View of Mortgages (and life). Scene 1 A farmer owns a horse farm outside Lexington on Richmond Road. Demographic trends indicate that this part.
Chapter 1 Introduction to Bond Markets. Intro to Fixed Income Markets What is a bond? A bond is simply a loan, but in the form of a security. The issuer.
Introduction to Fixed Income Securities Fixed Income Securities MB 77.
Derivative Markets. Agenda An Introduction to Derivatives Types of Derivatives Call Options Put Options Options Resources.
Topic 5. The Crisis of Securitization, plus … 2. Huge World Capital Surplus produced … The Shadow Banking System.
 Financial Option  A contract that gives its owner the right (but not the obligation) to purchase or sell an asset at a fixed price as some future date.
ERM: a Corporate Model Approach SOA Conference Chicago Thomas S. Y. Ho April
Bonds & Fixed-Income Securities Investment Strategies.
The Subprime Mortgage Crisis
CHAPTER 4 Background on Traded Instruments. Introduction Market risk: –the possibility of losses resulting from unfavorable market movements. –It is the.
Risk Management in Financial Institutions (II) 1 Risk Management in Financial Institutions (II): Hedging with Financial Derivatives Forwards Futures Options.
Options An Introduction to Derivative Securities.
Ch. 15: Financial Markets Financial markets –link borrowers and lenders. –determine interest rates, stock prices, bond prices, etc. Bonds –a promise by.
Bonds & Fixed-Income Securities Investment Strategies.
BONDS Savings and Investing. Characteristics of Bonds Bonds are debt instruments offered by the federal, state or local government and corporations Bonds.
Derivatives Markets The 600 Trillion Dollar Market.
McGraw-Hill/Irwin Copyright © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved. Asset Classes and Financial Instruments CHAPTER 2.
Finance Structures and Issues in the UAE Financial structure is a mixture of long–term debt and equity that a company uses to finance its operations, it’s.
Bond Pricing Portfolio Management. Styles of Bond Funds Bond funds are usually divided along the dimension of the two major risks that bond holders face.
© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
The Financial Crisis of and the Great Recession A Massive Failure of the Financial and Political Elites in the United States: The Crisis of 2008.
Using Options and Swaps to Hedge Risk
Student Name Student ID
Dan diBartolomeo Northfield Information Services December 2010.
Lunch at the Lab Book Review Chapter 11 – Credit Risk Greg Orosi March
Equity Risk, Credit Risk, Default Correlation, and Corporate Sustainability Dan diBartolomeo Northfield Information Services February 2011.
Economics 173A Financial Markets Bonds. Capital Markets To help to finance Companies Circa Annual Working Capital increases = $ 150 Billion.
McGraw-Hill/Irwin © 2007 The McGraw-Hill Companies, Inc., All Rights Reserved. Financial Securities CHAPTER 2.
Financial Options: Introduction. Option Basics A stock option is a derivative security, because the value of the option is “derived” from the value of.
Institutional Investments: Where Do We Go From Here? (Please tell me it’s up!) Presented by: Rick L. Smith, SVP, Institutional Investments Carolina First.
Derivatives. What is Derivatives? Derivatives are financial instruments that derive their value from the underlying assets(assets it represents) Assets.
Chapter 10: Options Markets Tuesday March 22, 2011 By Josh Pickrell.
Finance and Economics: The KMV experience Oldrich Alfons Vasicek Chengdu, May 2015.
Chapter 14 Financial Derivatives. © 2013 Pearson Education, Inc. All rights reserved.14-2 Hedging Engage in a financial transaction that reduces or eliminates.
Economic Bubbles How the housing market led to the Great Recession.
McGraw-Hill/Irwin Copyright © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved. Asset Classes and Financial Instruments CHAPTER 2.
Options An Introduction to Derivative Securities.
How “Sustainable” are Publicly Traded Firms? Dan diBartolomeo Northfield Information Services April 2010.
Copyright © 2010 Pearson Addison-Wesley. All rights reserved. Chapter 14 Financial Derivatives.
Option Valuation.
Chapter 1 Introduction to Bond Markets. Intro to Fixed Income Markets What is a bond? A bond is simply a loan, but in the form of a security. The issuer.
1 Bond Insurance Guarantees bond principal in case of a credit event. Effectively “swaps” the rating of the bond for that of the insurer. Purchased by.
Vicentiu Covrig 1 An introduction to Derivative Instruments An introduction to Derivative Instruments (Chapter 11 Reilly and Norton in the Reading Package)
CHAPTER 5 CREDIT RISK 1. Chapter Focus Distinguishing credit risk from market risk Credit policy and credit risk Credit risk assessment framework Inputs.
Structural Models. 2 Source: Moody’s-KMV What do we learn from these plots? The volatility of a firm’s assets is a major determinant of its.
Chapter 27 Credit Risk.
Chapter Fourteen Bond Prices and Yields
Money and Banking Lecture 16.
Bonds and Their Valuation
Stephen M. Schaefer London Business School
Dan diBartolomeo Northfield Information Services June 2010
Prof Ian Giddy Stern School of Business New York University
The Financial Crisis of and the Great Recession
Chapter 2 Learning Objectives
9. Other Risks and the Value of Cash Flows
BONDS Savings and Investing.
Chapter 9 Debt Valuation
Investment Alternatives
Asset Classes and Financial Instruments
Chapter 6 The Risk Structure and Term Structure of Interest Rates
Investment Alternatives
Interest Rates & Economic Bubbles
The Financial Crisis of and the Great Recession
Presentation transcript:

Suspecting the Rating Agencies Dan diBartolomeo Northfield Information Services January 2012

The Matter At Hand One of the largest contributing factors to the Global Financial Crisis of was the huge number of fixed income instruments with very high ratings (e.g. AAA) that were either severely downgraded or went into actual default. All three of the major rating agencies, Moodys, Standard and Poors, and Fitch were shown to be seriously deficient in their ratings of a variety of debt instruments, particularly complex instruments (e.g. Credit Default Obligations or CDOs). The rating agencies failed again with the obligations of major financial institutions such demonstrated by the spectacular collapses of firms such as AIG, Bear Stearns and Lehman Brothers.

Some Unpleasant Outcomes From the first quarter 2005 through the third quarter of 2007, two thirds of CDOs S&P had rated were downgraded. From the first quarter 2005 through the third quarter of 2007, two thirds of CDOs S&P had rated were downgraded. 44% of all CDOs were downgraded to speculative or in default 44% of all CDOs were downgraded to speculative or in default Over the same time, 17% of sub-prime residential mortgage securities were downgraded Over the same time, 17% of sub-prime residential mortgage securities were downgraded 9.8% were downgraded to speculative or in default 9.8% were downgraded to speculative or in default $250 Billion in major bank write offs from January 1, 2007 through April 2008, another $1.3 Trillion estimated from April 2008 to date $250 Billion in major bank write offs from January 1, 2007 through April 2008, another $1.3 Trillion estimated from April 2008 to date

When Money Is At Stake, Cheat! S&P has admitted to notching ratings on many securitized instruments S&P has admitted to notching ratings on many securitized instruments If an issuer wanted a rating done in a hurry, S&P would simply assume a rating of one grade lower than whatever S&P or Moodys had most recently rated the debt of the same issuer If an issuer wanted a rating done in a hurry, S&P would simply assume a rating of one grade lower than whatever S&P or Moodys had most recently rated the debt of the same issuer To my mind, this is fraud To my mind, this is fraud The expectations of financial market participants is that rating agencies actually conduct some form of credit analysis before issuing a rating The expectations of financial market participants is that rating agencies actually conduct some form of credit analysis before issuing a rating At a cocktail party, a securitization lawyer for S&P rebuked me, saying they had done nothing illegal, as there are no actual requirements for any analysis At a cocktail party, a securitization lawyer for S&P rebuked me, saying they had done nothing illegal, as there are no actual requirements for any analysis

Beating the Agencies at their Own Game At previous QWAFAFEW events we have described an approach to combine equity factor risk models and structural models of credit risk to provide consistent measures of equity risk, default risk and default correlation. The most important metric arising from this process is a market implied expected life of a firm. We employ this as a quantitative measure of the sustainability of firms In this presentation we will show how the a simple model using the expected life metric captured bankruptcy risk during the Global Financial Crisis and was predictive of subsequent credit rating changes and defaults We will also show that a related simple portfolio strategy would resulted in significant alpha for US fixed income portfolios during the most stressful portion of the GFC

Basic Contingent Claims Literature Merton (1974) poses the equity of a firm as a European call option on the firms assets, with a strike price equal to the face value of the firms debt Alternatively, lenders are short a put on the firm assets Default can occur only at debt maturity Black and Cox (1976) provide a first passage model Default can occur before debt maturity Firm extinction is assumed if asset values hit a boundary value (i.e. specified by bond covenants) Leland (1994) and Leland and Toft (1996) Account for the tax deductibility of interest payments and costs of bankruptcy Estimate boundary value as where equity value is maximized subject to bankruptcy

Reverse the Concept: Sustainability Instead of trying to estimate how likely it is that firm goes bankrupt, lets reverse the logic We will estimate the market implied expected life of firms using contingent claims analysis Formally, our measure is the median of the expectation of the distribution of the life of the firm Makes different default probabilities for different bond issues very natural as each maturity will lie at a different point in the survival time distribution Firms with no debt can now be included since it is possible that they get some debt in the future and default on that A quantitative measure of the fundamental and social concept of sustainability

Our Basic Option Pricing Exercise Underlying is the firms assets with asset volatility determined from the equity factor model How volatile would a firms stock be if the firm had no debt? This is the volatility of the assets Solve numerically for the implied expiration date of the option that equates the option values to the stock price Market implied expected life of the firm See Yaksick (1998) for numerical methods for evaluating a perpetual American option Include a term structure of interest rates so that as the implied expiration date moves around, the interest rate changes appropriately

Our Previously Published Research diBartolomeo, Journal of Investing, December 2010 Used equity volatilities from Northfield US Fundamental Model One year horizon for risk forecast Near horizon model are more suitable but less history available Estimate monthly for all firms in Northfield US equity universe from December 31, 1991 to March 31, 2010 Study three samples: All Financial firms Non-financial firms Sources of Time series variation Stock prices, debt levels, Northfield risk forecasts Mix of large and small firms, 4660 <= N <= 8309

A Digression on Too Big to Fail For the full sample period of 1992 through March 31, 2010 Non Financials: Median 14.74, Cap Weighted Revenue Weight Financials: Median 22.28, Cap Weighted Revenue Weighted, 7.86 Too Big to Fail is really real Risk taking is heavily concentrated in the largest financial firms Risk taking has been concentrated in the largest financial firms for at least 20 years

Quantifying Sustainability MSCI KLD DSI 400 index of US large cap firms considered socially responsible, 20 year history Typically about 200 firms in common with the S&P 500 July 31, 1995 DSI 400, Median 17, Average 17.91, Standard Deviation 9.93 S&P 500, Median 14, Average 15.40, Standard Deviation 9.28 Difference in Means is statistically significant at 95% level March 31, 2010 DSI 400, Median 30, Average 26.39, Standard Deviation S&P 500, Median 30, Average 24.93, Standard Deviation, Difference in Means is statistically significant at 90% but not 95% Testing on Disjoint Sets (DSI NOT S&P, S&P NOT DSI) Statistically significant difference in means for every time period tested

Results to Sustainability Equity Investing (1992 through March 2010) Table 1 1 MeanAnnualLeveraged MonthlyCumulativeMonthlyCompoundS&P Risk Return Standard DeviationReturn Equivalent Return Q5 Equal Q1 Equal Q5 Cap Q1 Cap S&P

Combining Sustainability and MV (1992 through March 2010, 200 Max Positions) Mean Monthly CumulativeMonthly Standard Deviation Annual Compound Return Annual Sharpe Ratio Q1 MV Q5 MV

We combined rating levels from S&P, Moodys and Fitch into a unified letter scheme Each rating level was assigned a numerical value A rating of AAA was 10 on the numeric scale A rating of D (default) was 1 on the scale Intermediate levels of AA,A,BBB,BB,B,CCC,CC,C A + added.333 A - subtracted.333 The scale is convenient but does not reflect any actual differences in probability of default (PD) or economic loss given default (LGD)

As part of our normal fixed income analysis we estimate option-adjusted spreads for about 6 Million fixed income instruments on a monthly basis Measures the portion of bond yield not associated with time value of money. This is premium for credit risk and illiquidity The median of the OAS values for set of the category members is used Monthly history available to 2001 Bonds are broken into about 800 categories based on rating, geographic region of issue and sector Computational model assumes lognormal interest rates and combines features from Fabozzi and Dattatreya (1989) and Black, Derman and Toy (1990). We can keep AAA ratings at 10, and D at 1 but rescale intermediate levels inversely proportional to OAS

RatingSimple NumericOAS Spread BPSpread Numeric AAA AA A BBB BB B CCC CC C D18011

We wanted a really clean history of US bond rating changes across all rating agencies We sent a temp (a classmate of mine) to the Boston Public Library to hand collect every rating change published in Barrons from 1992 to 2008 Information was hand entered into spreadsheets and then matched to issuers, in a partly automated, partly manual way It took roughly four months of tough full time effort There are roughly 8500 events in the data set and we have been able match about 6500 of those to entities with publicly traded equity The good news is that Steve was so good that he is now a very valued member of our Boston tech support staff

Our summer intern was then left to do an event study type model of the rating changes for the subset of US corporate bonds The big job is merging the expected life data derived from equities to issue level bond data It sounds easy but it is really a mess to track the related equity across mergers, acquisitions and spin-offs All data was standardized to make pooling across time easier Dependent variable was the percentage change in the simple numerical value of the credit rating Independent variables: 12 month percentage change in expected life as of prior month end 12 month change in the cross-sectional Z-score of expected life within the US equity universe Ethan survived too

We converted all data to rank values within the pooled sample In-sample our model had a correlation of about 40% (R- squared =.16) A very high degree of statistical significance on coefficients (T > 4) R-squared was higher for subsets of lower grade bonds (i.e. NOT A) Even with our simple model we could meaningfully predict subsequent changes in bond ratings These results are all conditional that a change in rating would eventually take place since only such events existed in our data Non-events (no rating change) were excluded from the sample by design Perhaps our model would predict 14 of every 5 downgrades

Universe is all US corporate bonds in the Northfield Everything Everywhere model Typical size around 18,000 bond issues Study period from December 31, 2005 to June 30, 2011 Minimum maturity one year Each bond is matched to contemporaneous expected life of issuer Assignments are updated annually for mergers, acquisitions Return performance calculations exclude bonds with price outliers at the start of the period

It should be intuitive that bonds with higher ratings should be associated with issuers with longer expected lives Break all bonds into 20 rating categories (including + and -) Calculate average expected life for all bonds in each rating category Correlate the average expected life and our simple numeric rating At 12/31/2005, the correlation across categories was +.68 Sample size of issues At 12/31/2007 (pre bailouts), the correlation was -.35 Sample size of issues By 12/31/2008, (post bailouts) the correlation was +.27 Sample size of issues

At each year end starting at 2005 we convert the expected life of issuer for each bond issue to a Z score within rating category A negative Z score indicates that our metric suggests that the firm is less creditworthy than the published rating Sort universe of bond issues into quintiles by Z score At 12/31/2006: Of the bottom quintile of 4400 bond issues, 2940 were from Wall Street firms that either went bankrupt, were acquired or needed major government assistance The rogues gallery included: Bear Stearns (534 issues), Merrill Lynch (868), Lehman Brothers (657), Morgan Stanley (257), CIT Financial (338), Countrywide (136) and Washington Mutual (24) Nearly identical result for 12/31/2007

US government intentions to mount the TARP bailout were announced on October 3, 2008 with most of the details filled in a couple weeks later. At October 31, 2008, the cumulative Q1/Q5 return spread was more than 1200 basis points in less than three years on widely diverse portfolios (equal weight across issues). The cumulative return spread peaked in December 2008 and declined back to almost exactly zero by June The implicit and explicit guarantees by the US Treasury and Federal Reserve had essentially driven the perceived creditworthiness of corporate bonds back to pre- GFC levels

Other Agencies: The Lace Case Lace Financial is a small US rating agency specializing in community banks, credit unions and insurance companies Santoni and Arbia (2010) studied the effectiveness of the Lace ratings on small US banks 116 small banks rated by Lace went under in % of the failed banks were rated E (lowest non-investment grade) at least a year before actual failure 94% of the failed banks were rated E six months before the actual failure Clearly, the Lace ratings were effective but maybe its just an issue of answering an easy question. Analyzing a small community bank may just be that much easier than a complex, global entity like Citigroup or Lehman Brothers.

Lets Start at the Beginning In the late 1990s, Moodys began to provide credit ratings of securitized corporate loans (CLO) based on a method known as the Binomial Expansion Technique In the late 1990s, Moodys began to provide credit ratings of securitized corporate loans (CLO) based on a method known as the Binomial Expansion Technique Once a default probability had been estimated for loans in a pool, the probabilities of potential multiple defaults within the pool was based on simple binomial probability formulas that assumed that defaults would be fully independent across borrowers Once a default probability had been estimated for loans in a pool, the probabilities of potential multiple defaults within the pool was based on simple binomial probability formulas that assumed that defaults would be fully independent across borrowers To account for the obvious flaw that defaults are likely to be correlated, Moodys introduced an adjustment called Diversity Scoring To account for the obvious flaw that defaults are likely to be correlated, Moodys introduced an adjustment called Diversity Scoring In 1999, Northfield published a research paper criticizing BET and Diversity Scoring based on a client request In 1999, Northfield published a research paper criticizing BET and Diversity Scoring based on a client request

Moodys Diversity Scoring To account for default correlation, Diversity Scoring reduced the assumed number of issues in a loan pool To account for default correlation, Diversity Scoring reduced the assumed number of issues in a loan pool For example, if you had 70 loans in a pool, you might count that as 40 independent loans For example, if you had 70 loans in a pool, you might count that as 40 independent loans Moodys broke firms into 32 industries Moodys broke firms into 32 industries 2 credits in the same industry counted as credits in the same industry counted as credits in the same industry counted as 4 10 credits in the same industry counted as 4 Implicitly there is an assumption that defaults are correlated within industries, but never across industries Implicitly there is an assumption that defaults are correlated within industries, but never across industries Completely ignores potential for pervasive effects of recession, war or other systemic influences Completely ignores potential for pervasive effects of recession, war or other systemic influences Although Moodys largely abandoned BET in 2005, many institutions such as AIG continued to use the method Although Moodys largely abandoned BET in 2005, many institutions such as AIG continued to use the method

The Secret Formula That Destroyed Wall Street Cover story in WIRED magazine, March 2009 Cover story in WIRED magazine, March 2009 Refers to the Gaussian Copula approach for estimating default risk across a pool of loans, from Li (2000) Refers to the Gaussian Copula approach for estimating default risk across a pool of loans, from Li (2000) Allows for closed form calculation of marginal risks as more and more loans are added to the pool to be securities Allows for closed form calculation of marginal risks as more and more loans are added to the pool to be securities Requires an assumption of the expected correlation of defaults Requires an assumption of the expected correlation of defaults The problem is credit risky instruments have high skew in the payoff distribution, so the joint distribution will be Gaussian under the Central Limit Theorem only for very large numbers of independent events The problem is credit risky instruments have high skew in the payoff distribution, so the joint distribution will be Gaussian under the Central Limit Theorem only for very large numbers of independent events Even a small degree of correlation calls the method into question Even a small degree of correlation calls the method into question

The Problem of Higher Order Dependence Imagine you want to allocate money to two hedge funds based on traditional MPT Imagine you want to allocate money to two hedge funds based on traditional MPT The two portfolio managers happen to have offices in the same building and meet for coffee every morning The two portfolio managers happen to have offices in the same building and meet for coffee every morning During conversation, they flip a coin. If the coin comes up heads they hold the identical portfolio for that day. If it comes up tails they go long/short against each other During conversation, they flip a coin. If the coin comes up heads they hold the identical portfolio for that day. If it comes up tails they go long/short against each other If the coin is fair, the time series of their portfolio returns will be zero If the coin is fair, the time series of their portfolio returns will be zero It varies daily from +1 to -1. averaging zero It varies daily from +1 to -1. averaging zero Being independent implies zero correlation, but zero correlation does not imply independence Being independent implies zero correlation, but zero correlation does not imply independence

We Go Blindly Forward with the Gaussian Copula Investment banks love the Gaussian copula because now you can get joint default probabilities over any number of loans with the estimation of a single number, the default correlation Investment banks love the Gaussian copula because now you can get joint default probabilities over any number of loans with the estimation of a single number, the default correlation The rating agencies such as Moodys and S&P go along and rate based on this method The rating agencies such as Moodys and S&P go along and rate based on this method The problem is where to get the default correlation assumption, since actual defaults were rare events, so statistical estimation from historical data is questionable The problem is where to get the default correlation assumption, since actual defaults were rare events, so statistical estimation from historical data is questionable Bankers used observable correlations from changes in spreads in the credit default swap market Bankers used observable correlations from changes in spreads in the credit default swap market

CDO/CDS Default Correlations Assessing default correlations from credit swap curves and CDO trading was horrendously faulty Assessing default correlations from credit swap curves and CDO trading was horrendously faulty Once CDOs and CDO 2 could be written on generic ABS index results instead of specific pools, they were a form of legalized gambling Once CDOs and CDO 2 could be written on generic ABS index results instead of specific pools, they were a form of legalized gambling The volumes in the CDO market were many times the volume of actual underlying loans against which to hedge credit risk, creating severe pricing distortions The volumes in the CDO market were many times the volume of actual underlying loans against which to hedge credit risk, creating severe pricing distortions The CDO/CDS markets were dominated by a few large players such as AIG, further distorting economic pricing relationships The CDO/CDS markets were dominated by a few large players such as AIG, further distorting economic pricing relationships

Summary The global financial crisis has many contributing factors, but the largest single contributor was the horrendous performance of fixed income credit ratings from the major rating agencies The global financial crisis has many contributing factors, but the largest single contributor was the horrendous performance of fixed income credit ratings from the major rating agencies In some cases, the quality of ratings was severely upward biased by business in considerations In some cases, the quality of ratings was severely upward biased by business in considerations In many cases the contributing factors were simply poor quantitative analysis in which mathematical convenience was allowed to take precedence over the conceptual rigor of the models In many cases the contributing factors were simply poor quantitative analysis in which mathematical convenience was allowed to take precedence over the conceptual rigor of the models The shortcomings in the analytical methods applied to the RMBS, CDO and CDS markets were easily observed by those who were relatively free of conflicts of interest The shortcomings in the analytical methods applied to the RMBS, CDO and CDS markets were easily observed by those who were relatively free of conflicts of interest